We are concerned with ground state solutions of the fractional problems with dipole-type potential and critical exponent. Under certain conditions on the dipole-type potential and the parameter, we show that the structure of the Palais-Smale sequence goes to zero weakly, and establish the existence of ground state solution to the above problems by using a new analytical method not involving the concentration-compactness principle.
Citation: |
[1] |
O. Bourget, M. Courdurier and C. Fernandez, Construction of solutions for some localized nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 39 (2019), 841-862.
doi: 10.3934/dcds.2019035.![]() ![]() ![]() |
[2] |
L. Caffarelli, Non-local diffusions, drifts and games, pp. 37-52 in "Nonlinear Partial Differential Equations" edt by H. Holden and K. Karlsen, Abel Symp., vol. 7, Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-25361-4.![]() ![]() ![]() |
[3] |
A. Cotsiolis and N. K. Travoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
doi: 10.1016/j.jmaa.2004.03.034.![]() ![]() ![]() |
[4] |
P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476.
doi: 10.1142/S0218202515500384.![]() ![]() ![]() |
[5] |
S. Dipierro, L. Montoro, I. Peral, B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99.
doi: 10.1007/s00526-016-1032-5.![]() ![]() ![]() |
[6] |
M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867.
doi: 10.3934/dcds.2015.35.5827.![]() ![]() ![]() |
[7] |
T. Hoffmann-Ostenhof and A. Laptev, Hardy inequalities with homogeneous weights, J. Funct. Anal., 268 (2015), 3278-3289.
doi: 10.1016/j.jfa.2015.03.016.![]() ![]() ![]() |
[8] |
A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.
doi: 10.1016/j.jfa.2013.08.027.![]() ![]() ![]() |
[9] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
[10] |
E. H. Lieb and H. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), 147-174.
![]() ![]() |
[11] |
E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, 2001.
![]() ![]() |
[12] |
V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1.![]() ![]() ![]() |
[13] |
S. I. Pekar, Untersuchung Über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
![]() |
[14] |
Y. Su, H. Chen, S. Liu and X. Fang, Fractional Schrödinger-Poisson system with weighted Hardy potential and critical exponent, Electron. J. Differ. Equ., 2020 (2020), 1-17.
![]() ![]() |
[15] |
J. T. Sun, T. F. Wu and Z. Feng, Non-autonomousSchrödinger-Poisson system in ${\Bbb R}^3$, Discrete Contin. Dyn. Syst., 38 (2018), 1889-1933.
doi: 10.3934/dcds.2018077.![]() ![]() ![]() |
[16] |
L. Wei, X.Y. Cheng and Z. Feng, Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials, Discrete Contin. Dyn. Syst., 36 (2016), 7169-7189.
doi: 10.3934/dcds.2016112.![]() ![]() ![]() |
[17] |
J. Yang and F. Wu, Doubly critical problems involving fractional Laplacians in $\Bbb R^N$, Adv. Nonlinear Stud., 17 (2017), 677-690.
doi: 10.1515/ans-2016-6012.![]() ![]() ![]() |
[18] |
R. Yang and Z. X. Lv, The properties of positive solutions to semilinear equations involving the fractional Laplacian, Commun. Pure Appl. Anal., 18 (2019), 1073-1089.
doi: 10.3934/cpaa.2019052.![]() ![]() ![]() |