# American Institute of Mathematical Sciences

doi: 10.3934/cpaa.2021113
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities

 1 Universidade Federal de Goiás, IME, Goiânia-GO, Brazil 2 Universidade Federal de Jataí, Jataí-GO, Brazil

* Corresponding author

Received  June 2020 Revised  May 2021 Early access June 2021

Fund Project: The second author was partially supported by CNPq and FAPDF with grants 309026/2020-2 and 16809.78.45403.25042017, respectively

It is established existence of ground and bound state solutions for Choquard equation considering concave-convex nonlinearities in the following form
 $\begin{equation*} \begin{cases} -\Delta u +V(x) u = (I_\alpha* |u|^p)|u|^{p-2}u+ \lambda |u|^{q-2}u \, {\rm{\;in\;}}\, \mathbb{R}^N, \\ \ u\in H^1( \mathbb{R}^N) \end{cases} \end{equation*}$
where
 $\lambda > 0, N \geq 3, \alpha \in (0, N)$
. The potential
 $V$
is a continuous function and
 $I_\alpha$
denotes the standard Riesz potential. Assume also that
 $1 < q < 2$
,
 $2_\alpha < p < 2^*_\alpha$
where
 $2_\alpha = (N+\alpha)/N$
,
 $2_\alpha = (N+\alpha)/(N-2)$
. Our main contribution is to consider a specific condition on the parameter
 $\lambda > 0$
taking into account the nonlinear Rayleigh quotient. More precisely, there exists
 $\lambda^* > 0$
such that our main problem admits at least two positive solutions for each
 $\lambda \in (0, \lambda^*]$
. In order to do that we combine Nehari method with a fine analysis on the nonlinear Rayleigh quotient. The parameter
 $\lambda^*> 0$
is optimal in some sense which allow us to apply the Nehari method.
Citation: M. L. M. Carvalho, Edcarlos D. Silva, C. Goulart. Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities. Communications on Pure &amp; Applied Analysis, doi: 10.3934/cpaa.2021113
##### References:
 [1] C. O. Alves and Ji anfu Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math. Vol., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.  Google Scholar [2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar [3] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext. Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar [4] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149.  Google Scholar [5] K. J. Brown and T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Differ. Equ., 69 (2007), 1-9.   Google Scholar [6] K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differ. Int. Equ., 22 (2009), 1097-1114.   Google Scholar [7] M. L. M. Carvalho, Y. Ilyasov and C. A. Santos, Separating of critical points on the Nehari manifold via the nonlinear generalized Rayleigh quotients, arXiv: 1906.07759. Google Scholar [8] Yi-Hsin Cheng and Tsung-Fang Wu, Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential, Commun. Pure Appl. Anal., 15 (2016), 1534-0392.  doi: 10.3934/cpaa.2016044.  Google Scholar [9] S. Chen and X. Tang, Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 114 (2020), 14 pp. doi: 10.1007/s13398-019-00775-5.  Google Scholar [10] P. Drábek and J. Milota, Methods of Nonlinear Analysis, Basler Lehrbücher, 2013. doi: 10.1007/978-3-0348-0387-8.  Google Scholar [11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.  Google Scholar [12] E. P. Gross, Physics of Many-Particle Systems, Gordon Breach, New York, 1996. Google Scholar [13] Y. Huang, Tsung-Fang Wu and Y. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, II, Commun. Contemp. Math., 17 (2015), 1450045. doi: 10.1142/S021919971450045X.  Google Scholar [14] X. Li, X. Liu and S. Mab, Infinitely many bound states for Choquard equations with local nonlinearities, Nonlinear Anal., 189 (2019), 111583. doi: 10.1016/j.na.2019.111583.  Google Scholar [15] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar [16] V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar [17] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.  doi: 10.2307/1993333.  Google Scholar [18] Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.  doi: 10.1007/BF02559588.  Google Scholar [19] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar [20] X. Li and S. Ma, Choquard equations with critical nonlinearities, Communications in Contemporary Mathematics, 22 (2020), 1950023. doi: 10.1142/S0219199719500238.  Google Scholar [21] R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600.  doi: 10.1007/BF02105068.  Google Scholar [22] S. I. Pokhozhaev, The fibration method for solving nonlinear boundary value problems, Trudy Mat. Inst. Steklov., 192 (1990), 146-163.   Google Scholar [23] P. Drabek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar [24] S. Pekar, Untersuchung Ber Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar [25] P. Pucci and J. Serrin, The maximum principle, in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar [26] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conf. Board of Math. Sci. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. doi: 10.1090/cbms/065.  Google Scholar [27] P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270–291. doi: 10.1007/BF00946631.  Google Scholar [28] C. A. Santos, R. L. Alves and K. Silva, Multiplicity of negative-energy solutions for singular-superlinear Schrödinger equations with indefinite-sign potential, (To appear in Communications in Contemporary Mathematics). Google Scholar [29] M. Struwe, Variational methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04194-9.  Google Scholar [30] Y. Il'yasov and K. Silva, On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method, Proc. Amer. Math. Soc., 146 (2018), 2925-2935.  doi: 10.1090/proc/13972.  Google Scholar [31] Y. Il'yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, Topol. Methods Nonlinear Anal., 49 (2017), 683-714.  doi: 10.12775/tmna.2017.005.  Google Scholar [32] Y. Il'yasov, On nonlocal existence results for elliptic equations with convex-concave nonlinearities, Nonl. Anal.: Th., Meth. Appl., 61 (2005), 211-236.  doi: 10.1016/j.na.2004.10.022.  Google Scholar [33] M. Willem, Minimax Theorems, Birkhauser Boston, Basel, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar [34] Tsung-Fang Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, J Funct. Anal., 258 (2010), 99-131.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

show all references

##### References:
 [1] C. O. Alves and Ji anfu Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math. Vol., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.  Google Scholar [2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar [3] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext. Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar [4] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149.  Google Scholar [5] K. J. Brown and T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Differ. Equ., 69 (2007), 1-9.   Google Scholar [6] K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differ. Int. Equ., 22 (2009), 1097-1114.   Google Scholar [7] M. L. M. Carvalho, Y. Ilyasov and C. A. Santos, Separating of critical points on the Nehari manifold via the nonlinear generalized Rayleigh quotients, arXiv: 1906.07759. Google Scholar [8] Yi-Hsin Cheng and Tsung-Fang Wu, Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential, Commun. Pure Appl. Anal., 15 (2016), 1534-0392.  doi: 10.3934/cpaa.2016044.  Google Scholar [9] S. Chen and X. Tang, Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 114 (2020), 14 pp. doi: 10.1007/s13398-019-00775-5.  Google Scholar [10] P. Drábek and J. Milota, Methods of Nonlinear Analysis, Basler Lehrbücher, 2013. doi: 10.1007/978-3-0348-0387-8.  Google Scholar [11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.  Google Scholar [12] E. P. Gross, Physics of Many-Particle Systems, Gordon Breach, New York, 1996. Google Scholar [13] Y. Huang, Tsung-Fang Wu and Y. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, II, Commun. Contemp. Math., 17 (2015), 1450045. doi: 10.1142/S021919971450045X.  Google Scholar [14] X. Li, X. Liu and S. Mab, Infinitely many bound states for Choquard equations with local nonlinearities, Nonlinear Anal., 189 (2019), 111583. doi: 10.1016/j.na.2019.111583.  Google Scholar [15] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar [16] V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar [17] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.  doi: 10.2307/1993333.  Google Scholar [18] Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.  doi: 10.1007/BF02559588.  Google Scholar [19] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar [20] X. Li and S. Ma, Choquard equations with critical nonlinearities, Communications in Contemporary Mathematics, 22 (2020), 1950023. doi: 10.1142/S0219199719500238.  Google Scholar [21] R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600.  doi: 10.1007/BF02105068.  Google Scholar [22] S. I. Pokhozhaev, The fibration method for solving nonlinear boundary value problems, Trudy Mat. Inst. Steklov., 192 (1990), 146-163.   Google Scholar [23] P. Drabek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar [24] S. Pekar, Untersuchung Ber Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar [25] P. Pucci and J. Serrin, The maximum principle, in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar [26] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conf. Board of Math. Sci. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. doi: 10.1090/cbms/065.  Google Scholar [27] P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270–291. doi: 10.1007/BF00946631.  Google Scholar [28] C. A. Santos, R. L. Alves and K. Silva, Multiplicity of negative-energy solutions for singular-superlinear Schrödinger equations with indefinite-sign potential, (To appear in Communications in Contemporary Mathematics). Google Scholar [29] M. Struwe, Variational methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04194-9.  Google Scholar [30] Y. Il'yasov and K. Silva, On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method, Proc. Amer. Math. Soc., 146 (2018), 2925-2935.  doi: 10.1090/proc/13972.  Google Scholar [31] Y. Il'yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, Topol. Methods Nonlinear Anal., 49 (2017), 683-714.  doi: 10.12775/tmna.2017.005.  Google Scholar [32] Y. Il'yasov, On nonlocal existence results for elliptic equations with convex-concave nonlinearities, Nonl. Anal.: Th., Meth. Appl., 61 (2005), 211-236.  doi: 10.1016/j.na.2004.10.022.  Google Scholar [33] M. Willem, Minimax Theorems, Birkhauser Boston, Basel, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar [34] Tsung-Fang Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, J Funct. Anal., 258 (2010), 99-131.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar
$\lambda\in (0,\lambda_*)$
$\lambda = \lambda_*$
$\lambda\in(\lambda_*,\lambda^*)$
The functions $Q_n(t)$, $Q_e(t)$
$\lambda\in(0,\lambda_*)$
$\lambda = \lambda_*$
$\lambda\in(\lambda_*,\lambda^*)$
$\lambda_1<\lambda_2$
$\lambda_1<\lambda_2$
 [1] Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107 [2] Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053 [3] Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559 [4] Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073 [5] Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076 [6] Jinguo Zhang, Dengyun Yang. Fractional $p$-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021036 [7] Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715 [8] Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139 [9] Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008 [10] Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815 [11] João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621 [12] Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108 [13] Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150 [14] Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013 [15] J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095 [16] Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423 [17] Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann problems with indefinite potential and concave terms. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2561-2616. doi: 10.3934/cpaa.2015.14.2561 [18] Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427 [19] Bartosz Bieganowski, Simone Secchi. The semirelativistic Choquard equation with a local nonlinear term. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4279-4302. doi: 10.3934/dcds.2019173 [20] Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

2020 Impact Factor: 1.916

## Tools

Article outline

Figures and Tables