• Previous Article
    Longtime behavior of a second order finite element scheme simulating the kinematic effects in liquid crystal dynamics
  • CPAA Home
  • This Issue
  • Next Article
    Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities
October  2021, 20(10): 3481-3497. doi: 10.3934/cpaa.2021115

A new Carleson measure adapted to multi-level ellipsoid covers

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China

* Corresponding author

Received  December 2020 Revised  May 2021 Published  October 2021 Early access  June 2021

Fund Project: The project is supported by the Xinjiang Training of Innovative Personnel Natural Science Foundation of China grant 2020D01C048 and the National Natural Science Foundation of China grant 11861062

We develop highly anisotropic Carleson measure over multi-level ellipsoid covers $ \Theta $ of $ \mathbb{R}^n $ that are highly anisotropic in the sense that the ellipsoids can change rapidly from level to level and from point to point. Then we show that the Carleson measure $ \mu $ is sufficient for which the integral defines a bounded operator from $ H^p(\Theta) $ to $ L^p(\mathbb{R}^{n+1}, \, \mu),\ 0

Citation: Ankang Yu, Yajuan Yang, Baode Li. A new Carleson measure adapted to multi-level ellipsoid covers. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3481-3497. doi: 10.3934/cpaa.2021115
References:
[1]

M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003), 1-122.  doi: 10.1090/memo/0781.

[2]

M. Bownik, B. Li and J. Li, Variable anisotropic singular integral operators, arXiv: 2004.09707v2.

[3]

L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math., 76 (1962), 547-559.  doi: 10.2307/1970375.

[4]

A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. Math., 16 (1975), 1-64.  doi: 10.1016/0001-8708(75)90099-7.

[5]

W. DahmenS. Dekel and P. Petrushev, Two-level-split decomposition of anisotropic Besov spaces, Constr. Approx., 31 (2010), 149-194.  doi: 10.1007/s00365-009-9058-y.

[6]

S. DekelY. Han and P. Petrushev, Anisotropic meshless frames on ${{{{{\mathbb R}}}^n}}$, J. Fourier Anal. Appl., 15 (2009), 634-662.  doi: 10.1007/s00041-009-9070-4.

[7]

S. DekelP. Petrushev and T. Weissblat, Hardy spaces on ${{{{{\mathbb R}}}^n}}$ with pointwise variable anisotropy, J. Fourier Anal. Appl., 17 (2011), 1066-1107.  doi: 10.1007/s00041-011-9176-3.

[8]

J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math, Providence, 2001. doi: 10.1090/gsm/029.

[9]

L. Grafakos, Modern Fourier Analysis, Springer-Verlag, New York, 2009. doi: 10.1007/978-0-387-09434-2.

[10]

S. Gadbois and T. Sledd, Careson measures on spaces of homogeneous type, Trans. Amer. Math Soc., 341 (1994), 841-862.  doi: 10.1090/S0002-9947-1994-1149122-2.

[11]

E. HarboureO. Salinas and B. Viviani, A look at $\text BMO_{\varphi}(\omega)$ through Carleson measures, J. Fourier Anal. Appl., 13 (2007), 267-284.  doi: 10.1007/s00041-005-5044-3.

[12]

S. Hou, D. Yang and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math., 15 (2013), 37 pp. doi: 10.1142/S0219199713500296.

[13] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, N. J., 1993. 

show all references

References:
[1]

M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003), 1-122.  doi: 10.1090/memo/0781.

[2]

M. Bownik, B. Li and J. Li, Variable anisotropic singular integral operators, arXiv: 2004.09707v2.

[3]

L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math., 76 (1962), 547-559.  doi: 10.2307/1970375.

[4]

A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. Math., 16 (1975), 1-64.  doi: 10.1016/0001-8708(75)90099-7.

[5]

W. DahmenS. Dekel and P. Petrushev, Two-level-split decomposition of anisotropic Besov spaces, Constr. Approx., 31 (2010), 149-194.  doi: 10.1007/s00365-009-9058-y.

[6]

S. DekelY. Han and P. Petrushev, Anisotropic meshless frames on ${{{{{\mathbb R}}}^n}}$, J. Fourier Anal. Appl., 15 (2009), 634-662.  doi: 10.1007/s00041-009-9070-4.

[7]

S. DekelP. Petrushev and T. Weissblat, Hardy spaces on ${{{{{\mathbb R}}}^n}}$ with pointwise variable anisotropy, J. Fourier Anal. Appl., 17 (2011), 1066-1107.  doi: 10.1007/s00041-011-9176-3.

[8]

J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math, Providence, 2001. doi: 10.1090/gsm/029.

[9]

L. Grafakos, Modern Fourier Analysis, Springer-Verlag, New York, 2009. doi: 10.1007/978-0-387-09434-2.

[10]

S. Gadbois and T. Sledd, Careson measures on spaces of homogeneous type, Trans. Amer. Math Soc., 341 (1994), 841-862.  doi: 10.1090/S0002-9947-1994-1149122-2.

[11]

E. HarboureO. Salinas and B. Viviani, A look at $\text BMO_{\varphi}(\omega)$ through Carleson measures, J. Fourier Anal. Appl., 13 (2007), 267-284.  doi: 10.1007/s00041-005-5044-3.

[12]

S. Hou, D. Yang and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math., 15 (2013), 37 pp. doi: 10.1142/S0219199713500296.

[13] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, N. J., 1993. 
[1]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1629-1645. doi: 10.3934/dcdsb.2021104

[2]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure and Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[3]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020

[4]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[5]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[6]

Yong-Jung Kim. A generalization of the moment problem to a complex measure space and an approximation technique using backward moments. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 187-207. doi: 10.3934/dcds.2011.30.187

[7]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[8]

Jose-Luis Lisani, Antoni Buades, Jean-Michel Morel. How to explore the patch space. Inverse Problems and Imaging, 2013, 7 (3) : 813-838. doi: 10.3934/ipi.2013.7.813

[9]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[10]

Charles Curry, Stephen Marsland, Robert I McLachlan. Principal symmetric space analysis. Journal of Computational Dynamics, 2019, 6 (2) : 251-276. doi: 10.3934/jcd.2019013

[11]

M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313

[12]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial and Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[13]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[14]

Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59.

[15]

Lei Wang, Meijun Zhu. Liouville theorems on the upper half space. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5373-5381. doi: 10.3934/dcds.2020231

[16]

Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38.

[17]

Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37

[18]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[19]

E. N. Dancer. Some remarks on half space problems. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 83-88. doi: 10.3934/dcds.2009.25.83

[20]

Sergio Andrés De Raco, Viktoriya Semeshenko. Labor mobility and industrial space in Argentina. Journal of Dynamics and Games, 2019, 6 (2) : 107-118. doi: 10.3934/jdg.2019008

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (103)
  • HTML views (214)
  • Cited by (0)

Other articles
by authors

[Back to Top]