    • Previous Article
Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions
• CPAA Home
• This Issue
• Next Article
Remark on 3-D Navier-Stokes system with strong dissipation in one direction
July & August  2021, 20(7&8): 2789-2809. doi: 10.3934/cpaa.2021119

## Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system

 1 Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg, France 2 School of Mathematical Sciences, Qufu Normal University, 273165, Qufu, China 3 School of Mathematics, Sichuan University, Chengdu, Sichuan, 610064, China

* Corresponding author

Received  January 2021 Revised  June 2021 Published  July & August 2021 Early access  July 2021

Fund Project: This work is partially supported by the NSF of China under grants 11931011, 11821001 and 11831011, and by the Science Development Project of Sichuan University under grant 2020SCUNL201

We consider the asymptotic behavior of a linear model arising in fluid-structure interactions. The system is formed by a heat equation and a wave equation in two distinct domains, which are coupled by atransmission condition along the interface of the domains. By means of the frequency domain approach, we establish some decay rates for the whole system. Our results also showthat the decay of the fluid-structure interaction depends not only on the transmission of the damping from the heat equation to the wave equation, but also on the location of the damping for the wave equation.

Citation: Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119
##### References:
  G. Avalos, I. Lasiecka and R. Triggiani, Heat-wave interaction in 2–3 dimensions: optimal rational decay rate, J. Math. Anal. Appl., 437 (2016), 782-815.  doi: 10.1016/j.jmaa.2015.12.051.  Google Scholar  G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: a frequency domain approach, Evol. Equ. Control Theory, 2 (2013), 233–253. doi: 10.3934/eect.2013.2.233.  Google Scholar  C. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765–780. doi: 10.1007/s00028-008-0424-1.  Google Scholar  C. Batty, L. Paunonen and D. Seifert, Optimal energy decay in a one-dimensional coupled wave-heat system, J. Evol. Equ., 16 (2016), 649–664. doi: 10.1007/s00028-015-0316-0.  Google Scholar  C. Batty, L. Paunonen and D. Seifert, Optimal energy decay for the wave-heat system on a rectangular domain, SIAM J. Math. Anal., 51 (2019), 808–819. doi: 10.1137/18M1195796.  Google Scholar  A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. doi: 10.1007/s00208-009-0439-0.  Google Scholar  N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinagage du réel, Acta. Math., 180 (1998), 1-29.  doi: 10.1007/BF02392877.  Google Scholar  S. Chen, Analysis of Singularities for Partial Differential Equations, Series in Applied and Computational Mathematics, 1. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. Google Scholar  T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface, Asymptot. Anal., 51 (2007), 17-45. Google Scholar  F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equ., 1 (1985), 43-56. Google Scholar  Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.  Google Scholar  Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC, London, 1999. Google Scholar  P. Loreti and B. Rao, Optimal energy decay rate for partially damped systems by spectral compensation,, SIAM J. Control Optim., 45 (2006), 1612-1632.  doi: 10.1137/S0363012903437319.  Google Scholar  J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson, Paris (1988). Google Scholar  A. C. S. Ng, Optimal Energy Decay in A One-Dimensional Wave-Heat-Wave System, Springer Proceedings in Mathematics and Statistics 325, Springer, Cham, 2020,293–314. Google Scholar  A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar  J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar  J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system, J. Math. Pures Appl., 84 (2005), 407-470.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar  J. Rozendaal, D. Seifert and R. Stahn, Optimal rates of decay for operator semigroups on Hilbert spaces, Adv. Math., 346 (2019), 359-388.  doi: 10.1016/j.aim.2019.02.007.  Google Scholar  X. Zhang and E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system, C. R. Math. Acad. Sci. Paris, 336 (2003), 823-828.  doi: 10.1016/S1631-073X(03)00204-8.  Google Scholar  X. Zhang and E. Zuazua, Polynomial decay and control of a $1$-d hyperbolic-parabolic coupled system, J. Differ. Equ., 204 (2004), 380-438.  doi: 10.1016/j.jde.2004.02.004.  Google Scholar  X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Ration. Mech. Anal., 184 (2007), 49-120.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

show all references

##### References:
  G. Avalos, I. Lasiecka and R. Triggiani, Heat-wave interaction in 2–3 dimensions: optimal rational decay rate, J. Math. Anal. Appl., 437 (2016), 782-815.  doi: 10.1016/j.jmaa.2015.12.051.  Google Scholar  G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: a frequency domain approach, Evol. Equ. Control Theory, 2 (2013), 233–253. doi: 10.3934/eect.2013.2.233.  Google Scholar  C. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765–780. doi: 10.1007/s00028-008-0424-1.  Google Scholar  C. Batty, L. Paunonen and D. Seifert, Optimal energy decay in a one-dimensional coupled wave-heat system, J. Evol. Equ., 16 (2016), 649–664. doi: 10.1007/s00028-015-0316-0.  Google Scholar  C. Batty, L. Paunonen and D. Seifert, Optimal energy decay for the wave-heat system on a rectangular domain, SIAM J. Math. Anal., 51 (2019), 808–819. doi: 10.1137/18M1195796.  Google Scholar  A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. doi: 10.1007/s00208-009-0439-0.  Google Scholar  N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinagage du réel, Acta. Math., 180 (1998), 1-29.  doi: 10.1007/BF02392877.  Google Scholar  S. Chen, Analysis of Singularities for Partial Differential Equations, Series in Applied and Computational Mathematics, 1. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. Google Scholar  T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface, Asymptot. Anal., 51 (2007), 17-45. Google Scholar  F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equ., 1 (1985), 43-56. Google Scholar  Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.  Google Scholar  Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC, London, 1999. Google Scholar  P. Loreti and B. Rao, Optimal energy decay rate for partially damped systems by spectral compensation,, SIAM J. Control Optim., 45 (2006), 1612-1632.  doi: 10.1137/S0363012903437319.  Google Scholar  J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson, Paris (1988). Google Scholar  A. C. S. Ng, Optimal Energy Decay in A One-Dimensional Wave-Heat-Wave System, Springer Proceedings in Mathematics and Statistics 325, Springer, Cham, 2020,293–314. Google Scholar  A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar  J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar  J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system, J. Math. Pures Appl., 84 (2005), 407-470.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar  J. Rozendaal, D. Seifert and R. Stahn, Optimal rates of decay for operator semigroups on Hilbert spaces, Adv. Math., 346 (2019), 359-388.  doi: 10.1016/j.aim.2019.02.007.  Google Scholar  X. Zhang and E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system, C. R. Math. Acad. Sci. Paris, 336 (2003), 823-828.  doi: 10.1016/S1631-073X(03)00204-8.  Google Scholar  X. Zhang and E. Zuazua, Polynomial decay and control of a $1$-d hyperbolic-parabolic coupled system, J. Differ. Equ., 204 (2004), 380-438.  doi: 10.1016/j.jde.2004.02.004.  Google Scholar  X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Ration. Mech. Anal., 184 (2007), 49-120.  doi: 10.1007/s00205-006-0020-x.  Google Scholar
  George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417  Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133  George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817  George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations & Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233  Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633  Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199  Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787  Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355  M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849  Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246  George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563  Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012  Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229  Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397  Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349  Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269  Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295  George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557  Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102  Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

2020 Impact Factor: 1.916