\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment

  • * Corresponding author

    * Corresponding author 
This work was jointly supported by the Major Program of University Natural Science Research Fund of Anhui Province(KJ2020ZD32), Anhui Provincial Natural Science Foundation (1808085QA01), China Postdoctoral Science Foundation (2018M640579), Anhui Provincial Postdoctoral Science Foundation (2019B329), and National Natural Science Foundation of China (11701007, 11771059, 1197107)
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we are concerned with the dynamics of a diffusive SIRI epidemic model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected individuals. We first establish the basic properties of solutions to the model, and then identify the basic reproduction number $ \mathscr{R}_{0} $ which serves as a threshold parameter that predicts whether epidemics will persist or become globally extinct. Moreover, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected individuals approaches zero. Our analytical results reveal that the epidemics can be extinct by limiting the movement of the susceptible individuals, and the infected individuals concentrate on certain points in some circumstances when limiting their mobility.

    Mathematics Subject Classification: Primary: 35B35, 35K57; Secondary: 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. AllenB. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.
    [2] R. Anderson and  R. MayInfectious Diesases of Humans: Dynamics and Control, Oxford University Press, 1992. 
    [3] R. Anderson and R. May, Population biology of infectious diseases, part I, Nature, 280 (1979), 361-367. 
    [4] B. BerrhaziM. FatiniT. Caraballo and R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2415-2431.  doi: 10.3934/dcdsb.2018057.
    [5] J. BenedettiL. Corey and R. Ashley, Recurrence rates in genital herpes after symptomatic first-episode infection, Ann. Int. Med., 121 (1994), 847-854. 
    [6] Y. CaiX. LianZ. Peng and W. Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, Nonlinear Anal. Real World Appl., 46 (2019), 178-194.  doi: 10.1016/j.nonrwa.2018.09.006.
    [7] R. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., 2004. doi: 10.1002/0470871296.
    [8] T. CaraballoM. FatiniR. Pettersson and R. Taki, A stochastic SIRI epidemic model with relapse and media coverage, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3483-3501.  doi: 10.3934/dcdsb.2018250.
    [9] Y. ChenJ. Li and S. Zou, Global dynamics of an epidemic model with relapse and nonlinear incidence, Math. Methods Appl. Sci., 42 (2019), 1283-1291.  doi: 10.1002/mma.5439.
    [10] L. Duan and Z. Xu, A note on the dynamics analysis of a diffusive cholera epidemic model with nonlinear incidence rate, Appl. Math. Lett., 106 (2020), 106356. doi: 10.1016/j.aml.2020.106356.
    [11] M. Fatini, M. Khalifi, R. Gerlach, A. Laaribi and R. Taki, Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence, Phys. A, 534 (2019), 120696. doi: 10.1016/j.physa.2019.03.061.
    [12] P. Georgescu and H. Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput., 219 (2013), 8496-8507.  doi: 10.1016/j.amc.2013.02.044.
    [13] Z. GuoF. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.  doi: 10.1007/s00285-011-0500-y.
    [14] J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988. doi: 10.1090/surv/025.
    [15] H. Hethcote and W. Van, Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs, Math. Biosci., 84 (1987), 85-118.  doi: 10.1016/0025-5564(87)90044-7.
    [16] H. HuX. YuanL. Huang and C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749.  doi: 10.3934/mbe.2019286.
    [17] H. Hu and X. Zou, Traveling waves of a diffusive SIR epidemic model with general nonlinear incidence and infinitely distributed latency but without demography, Nonlinear Anal. Real World Appl., 58 (2021), 103224. doi: 10.1016/j.nonrwa.2020.103224.
    [18] Z. MaY. Zhou and  J. WuModeling and Dynamics of Infectious Diseases, Higher Education Press, Beijing, 2009.  doi: 10.1142/7223.
    [19] P. Magal and X. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.
    [20] R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.
    [21] H. Moreira and W. Yuquan, Classroom Note: Global Stability in an S$\to$I$\to$R$\to$I Model, SIAM Rev., 39 (1997), 496-502.  doi: 10.1137/S0036144595295879.
    [22] L. OlsenG. Truty and W. Schaffer, Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theoret. Population Biol., 33 (1988), 344-370.  doi: 10.1016/0040-5809(88)90019-6.
    [23] M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.
    [24] H. Smith, Monotone Dynamic Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.
    [25] H. Smith and X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.
    [26] H. Thieme, Spectral bound and reproduction number for intinite-dimensional population structure and time heterogeneity, SIAMJ. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.
    [27] D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev., 32 (1990), 136-139.  doi: 10.1137/1032003.
    [28] J. Wang and J. Wang, Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population, J. Dyn. Differ. Equ., 33 (2020), 549-575.  doi: 10.1007/s10884-019-09820-8.
    [29] W. Wang and X. Zhao, Basic reproduction number for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.
    [30] Y. Wu and X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equ., 264 (2018), 4989-5024.  doi: 10.1016/j.jde.2017.12.027.
    [31] Y. YangJ. Zhou and C. Hsu, Threshold dynamics of a diffusive SIRI model with nonlinear incidence rate, J. Math. Anal. Appl., 478 (2019), 874-896.  doi: 10.1016/j.jmaa.2019.05.059.
    [32] Y. YangL. ZouT. Zhang and Y. Xu, Dynamical analysis of a diffusive SIRS model with general incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2433-2451.  doi: 10.3934/dcdsb.2020017.
    [33] W. Zhang and X. Meng, Stochastic analysis of a novel nonautonomous periodic SIRI epidemic system with random disturbances, Phys. A, 492 (2018), 1290-1301.  doi: 10.1016/j.physa.2017.11.057.
    [34] X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(2649) PDF downloads(382) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return