doi: 10.3934/cpaa.2021122
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain

Department of Mathematics, Nanjing University, Nanjing, 210093, China

* Corresponding author

Received  April 2021 Revised  June 2021 Early access July 2021

Fund Project: This work is supported by NSFC (Grant Nos. 12071212, 11971234) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

We study a kinetic-fluid model in a $ 3D $ bounded domain. More precisely, this model is a coupling of the Vlasov-Fokker-Planck equation with the local alignment force and the compressible Navier-Stokes equations with nonhomogeneous Dirichlet boundary condition. We prove the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient $ \gamma> 3/2 $) and hence extend the existence result of Choi and Jung [Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, arXiv: 1912.13134v2], where the velocity of the fluid is supplemented with homogeneous Dirichlet boundary condition.

Citation: Fucai Li, Yue Li. Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021122
References:
[1]

S. BerresR. BürgerK. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.   Google Scholar

[2]

D. Bresch and P. E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., 188 (2018), 577-684.   Google Scholar

[3]

R. BürgerW. L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes, Z. Angew. Math. Mech., 80 (2000), 79-92.   Google Scholar

[4]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.   Google Scholar

[5]

J. A. CarrilloY. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal., 33 (2016), 273-307.   Google Scholar

[6]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.   Google Scholar

[7]

Y. P. Choi and J. Jung, Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, preprint, arXiv: 1912.13134v2. Google Scholar

[8]

Y. P. Choi and J. Jung, Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity, arXiv: 1901.01221v1 Google Scholar

[9]

R. DenkM. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.   Google Scholar

[10]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.   Google Scholar

[11]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.   Google Scholar

[12]

S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82 (2003), 949-973.   Google Scholar

[13]

T. KarperA. Mellet and K. Trivisa, Existence of weak solutions to the kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.   Google Scholar

[14]

F. Li and Y. Li, Global weak solutions and asymptotic analysis for a kinetic-fluid model with a heterogeneous friction force, preprint.  Google Scholar

[15]

F. LiY. Mu and D. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.   Google Scholar

[16]

Y. Li, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data, Z. Angew. Math. Phys., 72 (2021), 29 pp.  Google Scholar

[17]

P. L. Lions, Mathematical Topics in Fluid Mechanics-Volume 2: Compressible Models, Oxford Science Publications, Oxford, 1998.  Google Scholar

[18]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.   Google Scholar

[19]

A. Mellet and A. Vasseur, Asymptotic anslysis for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.   Google Scholar

[20]

P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations: theory and shape optimization, Springer-Verlag, New York, 2012. doi: 10.1007/978-3-0348-0367-0.  Google Scholar

[21]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-74.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

show all references

References:
[1]

S. BerresR. BürgerK. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.   Google Scholar

[2]

D. Bresch and P. E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., 188 (2018), 577-684.   Google Scholar

[3]

R. BürgerW. L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes, Z. Angew. Math. Mech., 80 (2000), 79-92.   Google Scholar

[4]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.   Google Scholar

[5]

J. A. CarrilloY. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal., 33 (2016), 273-307.   Google Scholar

[6]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.   Google Scholar

[7]

Y. P. Choi and J. Jung, Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, preprint, arXiv: 1912.13134v2. Google Scholar

[8]

Y. P. Choi and J. Jung, Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity, arXiv: 1901.01221v1 Google Scholar

[9]

R. DenkM. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.   Google Scholar

[10]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.   Google Scholar

[11]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.   Google Scholar

[12]

S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82 (2003), 949-973.   Google Scholar

[13]

T. KarperA. Mellet and K. Trivisa, Existence of weak solutions to the kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.   Google Scholar

[14]

F. Li and Y. Li, Global weak solutions and asymptotic analysis for a kinetic-fluid model with a heterogeneous friction force, preprint.  Google Scholar

[15]

F. LiY. Mu and D. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.   Google Scholar

[16]

Y. Li, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data, Z. Angew. Math. Phys., 72 (2021), 29 pp.  Google Scholar

[17]

P. L. Lions, Mathematical Topics in Fluid Mechanics-Volume 2: Compressible Models, Oxford Science Publications, Oxford, 1998.  Google Scholar

[18]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.   Google Scholar

[19]

A. Mellet and A. Vasseur, Asymptotic anslysis for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.   Google Scholar

[20]

P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations: theory and shape optimization, Springer-Verlag, New York, 2012. doi: 10.1007/978-3-0348-0367-0.  Google Scholar

[21]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-74.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[1]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[2]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[3]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[4]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[5]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[6]

Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021146

[7]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[8]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[9]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[10]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[11]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[12]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[13]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[14]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[15]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[16]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[17]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[18]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[19]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[20]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

2020 Impact Factor: 1.916

Article outline

[Back to Top]