October  2021, 20(10): 3605-3636. doi: 10.3934/cpaa.2021123

Parabolic problems in generalized Sobolev spaces

1. 

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

2. 

Institute of Mathematics of the National Academy of Sciences of Ukraine, 3, Tereshchenkivs'ka st., Kyiv, Ukraine, 01024

* Corresponding author

Received  January 2021 Revised  June 2021 Published  October 2021 Early access  July 2021

Fund Project: This work was supported by the Grant H2020-MSCA-RISE-2019, project number 873071 (SOMPATY: Spectral Optimization: From Mathematics to Physics and Advanced Technology)

We consider a general inhomogeneous parabolic initial-boundary value problem for a $ 2b $-parabolic differential equation given in a finite multidimensional cylinder. We investigate the solvability of this problem in some generalized anisotropic Sobolev spaces. They are parametrized with a pair of positive numbers $ s $ and $ s/(2b) $ and with a function $ \varphi:[1,\infty)\to(0,\infty) $ that varies slowly at infinity. The function parameter $ \varphi $ characterizes subordinate regularity of distributions with respect to the power regularity given by the number parameters. We prove that the operator corresponding to this problem is an isomorphism on appropriate pairs of these spaces. As an application, we give a theorem on the local regularity of the generalized solution to the problem. We also obtain sharp sufficient conditions under which chosen generalized derivatives of this solution are continuous on a given set.

Citation: Valerii Los, Vladimir Mikhailets, Aleksandr Murach. Parabolic problems in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3605-3636. doi: 10.3934/cpaa.2021123
References:
[1]

M. S. Agranovich and M. I. Vishik, Elliptic problems with parameter and parabolic problems of general form, (Russian) Uspehi Mat. Nauk, 19 (1964), 53–161 [English translation in Russian Math. Surveys, 19 (1964), 53–157].

[2]

Y. Ameur, Interpolation between Hilbert spaces, in Analysis of Operators on Function Spaces, Trends Math. (eds. A. Aleman etc.), Birkhäuser/Springer, Cham, (2019), 63–115. doi: 10.1007/978-3-030-14640-5_4.

[3]

A. AnopR. Denk and A. Murach, Elliptic problems with rough boundary data in generalized Sobolev spaces, Commun. Pure Appl. Anal., 20 (2021), 697-735.  doi: 10.3934/cpaa.2020286.

[4]

Yu. M. Berezansky, Expansions in Eigenfunctions of Selfadjoint Operators, American Mathematical Society, Providence, RI, 1968.

[5]

J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss., band 223, Springer-Verlag, Berlin-New York, 1976.

[6]

O. V. Besov, V. P. Il'in and S. M. Nikol'skij, Integral Representations of Functions and Embedding Theorems, (Russian) 2$^{nd}$ edition, Nauka, Moscow, 1996.

[7] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1989. 
[8]

R. DenkM. Hieber and J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.

[9]

W. F. Donoghue, The interpolation of quadratic norms, Acta Math., 118 (1967), 251-270.  doi: 10.1007/BF02392483.

[10]

S. D. Eidel'man, Parabolic equations, in Encyclopaedia Math. Sci., vol. 63 (Partial Differential Equations, VI. Elliptic and Parabolic Operators) (eds. Yu.V. Egorov and M.A. Shubin), Springer, Berlin, (1994), 205–316.

[11]

S. D. Eidel'man and N. V. Zhitarashu, Parabolic Boundary Value Problems, Birkhäuser Verlag, Basel, 1998. doi: 10.1007/978-3-0348-8767-0.

[12]

M. Fan, Qudratic interpolation and some operator inequalities, J. Math. Inequal., 5 (2011), 413-427.  doi: 10.7153/jmi-05-36.

[13]

W. Farkas and H. G. Leopold, Characterisations of function spaces of generalized smoothness, Ann. Mat. Pura Appl., 185 (2006), 1-62.  doi: 10.1007/s10231-004-0110-z.

[14]

C. Foiaş and J. L. Lions, Sur certains théorèmes d'interpolation, Acta Scient. Math. Szeged, 22 (1961), 269-282. 

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.

[16]

L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.

[17]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. II, Differential Operators with Constant Coefficients, Springer, Berlin, 1983.

[18]

A. M. Il'in, A. S. Kalashnikov and O. A. Oleinik, Linear equations of the second order of parabolic type, (Russian) Uspekhi Mat. Nauk, 17 (1962), 3–146; English translation in Russian Math. Surveys, 17: 3 (1962), 1–143.

[19]

V. A. Il'in, The solvability of mixed problems for hyperbolic and parabolic equations, (Russian) Uspekhi Mat. Nauk, 15 (1960), 97–154; English translation in Russian Math. Surveys, 15: 1 (1960), 85–142.

[20]

S. G. Krein, Yu. L. Petunin and E. M. Semënov, Interpolation of Linear Operators, American Mathematical Society, Providence, RI, 1982.

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'tzeva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

[22]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications, vol. II, Springer, Berlin, 1972.

[23]

V. M. Los, Anisotropic Hörmander spaces on the lateral surface of a cylinder, J. Math. Sci. (N. Y.), 217 (2016), 456-467.  doi: 10.1007/s10958-016-2985-9.

[24]

V. M. Los, Theorems on isomorphisms for some parabolic initial-boundary-value problems in Hörmander spaces: limiting case, Ukrainian Math. J., 68 (2016), 894-909.  doi: 10.1007/s11253-016-1264-8.

[25]

V. M. Los, Classical Solutions of Parabolic Initial-Boundary-Value Problems and Hörmander Spaces, Ukrainian Math. J., 68 (2017), 1412-1423.  doi: 10.1007/s11253-017-1303-0.

[26]

V. LosV. A. Mikhailets and A. A. Murach, An isomorphism theorem for parabolic problems in Hörmander spaces and its applications, Commun. Pure Appl. Anal., 16 (2017), 69-97.  doi: 10.3934/cpaa.2017003.

[27]

V. Los and A. Murach, Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces, Open Math., 15 (2017), 57-76.  doi: 10.1515/math-2017-0008.

[28]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser Verlag, Basel, 1995.

[29]

V. A. Mikhailets and A. A. Murach, Extended Sobolev scale and elliptic operators, Ukrainian. Math. J., 65 (2013), 435-447.  doi: 10.1007/s11253-013-0787-5.

[30]

V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin, 2014. doi: 10.1515/9783110296891.

[31]

V. A. Mikhailets and A. A. Murach, Interpolation Hilbert spaces between Sobolev spaces, Results Math., 67 (2015), 135-152.  doi: 10.1007/s00025-014-0399-x.

[32]

F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean spaces, Birkhäser, Basel, 2010.

[33]

V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep., 1 (1984), 349-515. 

[34]

B. Paneah, The Oblique Derivative Problem. The Poincaré problem, Wiley–VCH, Berlin, 2000.

[35]

E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976.

[36]

L. N. Slobodeckii, Generalized Sobolev spaces and their application to boundary problems for partial differential equations, (Russian) Leningrad. Gos. Ped. Inst. Uchen. Zap., 197 (1958), 54–112; English translation in Amer. Math. Soc. Transl. (2), 57 (1966), 207–275.

[37]

V. A. Solonnikov, Apriori estimates for solutions of second-order equations of parabolic type, (Russian) Tr. Mat. Inst. Steklova, 70 (1964), 133–212.

[38]

H. Triebel, Interpolation Theory, Function Spaces, Differential, Operators, 2$^{nd}$ edition, Johann Ambrosius Barth, Heidelberg, 1995.

[39]

H. Triebel, The Structure of Functions, Birkhäser, Basel, 2001.

[40]

L. R. Volevich and B. P. Paneah, Certain spaces of generalized functions and embedding theorems, (Russian) Uspekhi Mat. Nauk, 20 (1965), 3–74; English translation in Russian Math. Surveys, 20 (1965), 1–73.

[41]

N. V. Zhitarashu, Theorems on complete collection of isomorphisms in the $L_2$-theory of generalized solutions for one equation parabolic in Petrovski$\breve{l}$ sense, Mat. Sb., 128 (1985), 451-473. 

show all references

References:
[1]

M. S. Agranovich and M. I. Vishik, Elliptic problems with parameter and parabolic problems of general form, (Russian) Uspehi Mat. Nauk, 19 (1964), 53–161 [English translation in Russian Math. Surveys, 19 (1964), 53–157].

[2]

Y. Ameur, Interpolation between Hilbert spaces, in Analysis of Operators on Function Spaces, Trends Math. (eds. A. Aleman etc.), Birkhäuser/Springer, Cham, (2019), 63–115. doi: 10.1007/978-3-030-14640-5_4.

[3]

A. AnopR. Denk and A. Murach, Elliptic problems with rough boundary data in generalized Sobolev spaces, Commun. Pure Appl. Anal., 20 (2021), 697-735.  doi: 10.3934/cpaa.2020286.

[4]

Yu. M. Berezansky, Expansions in Eigenfunctions of Selfadjoint Operators, American Mathematical Society, Providence, RI, 1968.

[5]

J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss., band 223, Springer-Verlag, Berlin-New York, 1976.

[6]

O. V. Besov, V. P. Il'in and S. M. Nikol'skij, Integral Representations of Functions and Embedding Theorems, (Russian) 2$^{nd}$ edition, Nauka, Moscow, 1996.

[7] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1989. 
[8]

R. DenkM. Hieber and J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.

[9]

W. F. Donoghue, The interpolation of quadratic norms, Acta Math., 118 (1967), 251-270.  doi: 10.1007/BF02392483.

[10]

S. D. Eidel'man, Parabolic equations, in Encyclopaedia Math. Sci., vol. 63 (Partial Differential Equations, VI. Elliptic and Parabolic Operators) (eds. Yu.V. Egorov and M.A. Shubin), Springer, Berlin, (1994), 205–316.

[11]

S. D. Eidel'man and N. V. Zhitarashu, Parabolic Boundary Value Problems, Birkhäuser Verlag, Basel, 1998. doi: 10.1007/978-3-0348-8767-0.

[12]

M. Fan, Qudratic interpolation and some operator inequalities, J. Math. Inequal., 5 (2011), 413-427.  doi: 10.7153/jmi-05-36.

[13]

W. Farkas and H. G. Leopold, Characterisations of function spaces of generalized smoothness, Ann. Mat. Pura Appl., 185 (2006), 1-62.  doi: 10.1007/s10231-004-0110-z.

[14]

C. Foiaş and J. L. Lions, Sur certains théorèmes d'interpolation, Acta Scient. Math. Szeged, 22 (1961), 269-282. 

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.

[16]

L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.

[17]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. II, Differential Operators with Constant Coefficients, Springer, Berlin, 1983.

[18]

A. M. Il'in, A. S. Kalashnikov and O. A. Oleinik, Linear equations of the second order of parabolic type, (Russian) Uspekhi Mat. Nauk, 17 (1962), 3–146; English translation in Russian Math. Surveys, 17: 3 (1962), 1–143.

[19]

V. A. Il'in, The solvability of mixed problems for hyperbolic and parabolic equations, (Russian) Uspekhi Mat. Nauk, 15 (1960), 97–154; English translation in Russian Math. Surveys, 15: 1 (1960), 85–142.

[20]

S. G. Krein, Yu. L. Petunin and E. M. Semënov, Interpolation of Linear Operators, American Mathematical Society, Providence, RI, 1982.

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'tzeva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

[22]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications, vol. II, Springer, Berlin, 1972.

[23]

V. M. Los, Anisotropic Hörmander spaces on the lateral surface of a cylinder, J. Math. Sci. (N. Y.), 217 (2016), 456-467.  doi: 10.1007/s10958-016-2985-9.

[24]

V. M. Los, Theorems on isomorphisms for some parabolic initial-boundary-value problems in Hörmander spaces: limiting case, Ukrainian Math. J., 68 (2016), 894-909.  doi: 10.1007/s11253-016-1264-8.

[25]

V. M. Los, Classical Solutions of Parabolic Initial-Boundary-Value Problems and Hörmander Spaces, Ukrainian Math. J., 68 (2017), 1412-1423.  doi: 10.1007/s11253-017-1303-0.

[26]

V. LosV. A. Mikhailets and A. A. Murach, An isomorphism theorem for parabolic problems in Hörmander spaces and its applications, Commun. Pure Appl. Anal., 16 (2017), 69-97.  doi: 10.3934/cpaa.2017003.

[27]

V. Los and A. Murach, Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces, Open Math., 15 (2017), 57-76.  doi: 10.1515/math-2017-0008.

[28]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser Verlag, Basel, 1995.

[29]

V. A. Mikhailets and A. A. Murach, Extended Sobolev scale and elliptic operators, Ukrainian. Math. J., 65 (2013), 435-447.  doi: 10.1007/s11253-013-0787-5.

[30]

V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin, 2014. doi: 10.1515/9783110296891.

[31]

V. A. Mikhailets and A. A. Murach, Interpolation Hilbert spaces between Sobolev spaces, Results Math., 67 (2015), 135-152.  doi: 10.1007/s00025-014-0399-x.

[32]

F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean spaces, Birkhäser, Basel, 2010.

[33]

V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep., 1 (1984), 349-515. 

[34]

B. Paneah, The Oblique Derivative Problem. The Poincaré problem, Wiley–VCH, Berlin, 2000.

[35]

E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976.

[36]

L. N. Slobodeckii, Generalized Sobolev spaces and their application to boundary problems for partial differential equations, (Russian) Leningrad. Gos. Ped. Inst. Uchen. Zap., 197 (1958), 54–112; English translation in Amer. Math. Soc. Transl. (2), 57 (1966), 207–275.

[37]

V. A. Solonnikov, Apriori estimates for solutions of second-order equations of parabolic type, (Russian) Tr. Mat. Inst. Steklova, 70 (1964), 133–212.

[38]

H. Triebel, Interpolation Theory, Function Spaces, Differential, Operators, 2$^{nd}$ edition, Johann Ambrosius Barth, Heidelberg, 1995.

[39]

H. Triebel, The Structure of Functions, Birkhäser, Basel, 2001.

[40]

L. R. Volevich and B. P. Paneah, Certain spaces of generalized functions and embedding theorems, (Russian) Uspekhi Mat. Nauk, 20 (1965), 3–74; English translation in Russian Math. Surveys, 20 (1965), 1–73.

[41]

N. V. Zhitarashu, Theorems on complete collection of isomorphisms in the $L_2$-theory of generalized solutions for one equation parabolic in Petrovski$\breve{l}$ sense, Mat. Sb., 128 (1985), 451-473. 

[1]

Valerii Los, Vladimir A. Mikhailets, Aleksandr A. Murach. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Communications on Pure and Applied Analysis, 2017, 16 (1) : 69-98. doi: 10.3934/cpaa.2017003

[2]

Alexander Bobylev, Irina Potapenko. On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022020

[3]

Wenning Wei. On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5353-5378. doi: 10.3934/dcds.2015.35.5353

[4]

Seung Jun Chang, Jae Gil Choi. Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Communications on Pure and Applied Analysis, 2020, 19 (1) : 371-389. doi: 10.3934/cpaa.2020019

[5]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[6]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[7]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[8]

Sergey Degtyarev. Cauchy problem for a fractional anisotropic parabolic equation in anisotropic Hölder spaces. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022029

[9]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[10]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure and Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[11]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control and Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[12]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[13]

María José Beltrán, José Bonet, Carmen Fernández. Classical operators on the Hörmander algebras. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 637-652. doi: 10.3934/dcds.2015.35.637

[14]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[15]

Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155

[16]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[17]

Michael S. Jolly, Anuj Kumar, Vincent R. Martinez. On local well-posedness of logarithmic inviscid regularizations of generalized SQG equations in borderline Sobolev spaces. Communications on Pure and Applied Analysis, 2022, 21 (1) : 101-120. doi: 10.3934/cpaa.2021169

[18]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[19]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[20]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (128)
  • HTML views (207)
  • Cited by (0)

[Back to Top]