October  2021, 20(10): 3637-3654. doi: 10.3934/cpaa.2021124

Energy scattering for the focusing fractional generalized Hartree equation

1. 

Departement of Mathematics, College of Sciences and Arts in Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia

2. 

University of Tunis El Manar, Faculty of Science of Tunis, LR03ES04 partial differential Equations and applications, 2092 Tunis, Tunisia

* Corresponding author

Received  February 2021 Revised  June 2021 Published  October 2021 Early access  July 2021

This note studies the asymptotics of radial global solutions to the non-linear fractional Schrödinger equation
$ i\dot u-(-\Delta)^s u+|u|^{p-2}(I_\alpha *|u|^p)u = 0. $
Indeed, using a new method due to Dodson-Murphy [10], one proves that, in the inter-critical regime, under the ground state threshold, the radial global solutions scatter in the energy space.
Citation: Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3637-3654. doi: 10.3934/cpaa.2021124
References:
[1]

R. Adams, Sobolev Spaces, Academic, New York, 1975.

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow-up for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.

[3]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.

[4]

Y. Cho, G. Hwang and T. Ozawa, On the focusing energy-critical fractional nonlinear Schrödinger equations, Adv. Differ. Equ., 23, (2018), 161–192.

[5]

Y. ChoG. Hwang and Y-S. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.

[6]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.  doi: 10.1512/iumj.2013.62.4970.

[7]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.

[8]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.

[9]

P. D'aveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Model. Meth. Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.

[10]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.

[11]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.

[12]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.

[13]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364.  doi: 10.1016/j.jmaa.2017.11.060.

[14]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136.  doi: 10.1007/BF01214768.

[15]

Z. GuoY. SireY. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 15 (2018), 265-282.  doi: 10.4310/dpde.2018.v15.n4.a2.

[16]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.

[17]

J. Holmer and S. Roudenko, A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation, Commun. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.

[18]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201, (2008), 147–212. doi: 10.1007/s11511-008-0031-6.

[19]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[20]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A., 268 (2000), 298-304.  doi: 10.1016/S0375-9601(00)00201-2.

[21]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.

[22]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.

[23]

E. Lieb, Analysis, 2nd ed., Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.2307/3621022.

[24]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.

[25]

C. Peng and D. Zhao, Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation, Discr. Contin. Dyn. Systems-B, 24 (2019), 3335-3356.  doi: 10.3934/dcdsb.2018323.

[26]

R. Penrose, Quantum computation, entanglement and state reduction, Phil. Trans. R. Soc., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.

[27]

T. Saanouni, Strong instability of standing waves for the fractional Choquard equation, J. Math. Phys., 59 (2018), 081509. doi: 10.1063/1.5043473.

[28]

T. Saanouni, A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470 (2019), 1004-1029.  doi: 10.1016/j.jmaa.2018.10.045.

[29]

T. Saanouni, Potential well theory for the focusing fractional Choquard equation, J. Math. Phys., 61 (2020), 061502. doi: 10.1063/5.0002234.

[30]

Z. ShenF. Gao and M. Yang, Ground states for nonlinear fractional Choquard equations with general non-linearities, Math. Meth. App. Sci., 39 (2016), 4082-4098.  doi: 10.1002/mma.3849.

[31]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discr. Cont. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.

[32]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.

[33]

S. Zhu, Existence of Stable Standing Waves for the Fractional Schrödinger Equations with Combined Non-linearities, J. Evol. Equ., 17 (2017), 1003-1021.  doi: 10.1007/s00028-016-0363-1.

show all references

References:
[1]

R. Adams, Sobolev Spaces, Academic, New York, 1975.

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow-up for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.

[3]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.

[4]

Y. Cho, G. Hwang and T. Ozawa, On the focusing energy-critical fractional nonlinear Schrödinger equations, Adv. Differ. Equ., 23, (2018), 161–192.

[5]

Y. ChoG. Hwang and Y-S. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.

[6]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.  doi: 10.1512/iumj.2013.62.4970.

[7]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.

[8]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.

[9]

P. D'aveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Model. Meth. Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.

[10]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.

[11]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.

[12]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.

[13]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364.  doi: 10.1016/j.jmaa.2017.11.060.

[14]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136.  doi: 10.1007/BF01214768.

[15]

Z. GuoY. SireY. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 15 (2018), 265-282.  doi: 10.4310/dpde.2018.v15.n4.a2.

[16]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.

[17]

J. Holmer and S. Roudenko, A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation, Commun. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.

[18]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201, (2008), 147–212. doi: 10.1007/s11511-008-0031-6.

[19]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[20]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A., 268 (2000), 298-304.  doi: 10.1016/S0375-9601(00)00201-2.

[21]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.

[22]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.

[23]

E. Lieb, Analysis, 2nd ed., Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.2307/3621022.

[24]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.

[25]

C. Peng and D. Zhao, Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation, Discr. Contin. Dyn. Systems-B, 24 (2019), 3335-3356.  doi: 10.3934/dcdsb.2018323.

[26]

R. Penrose, Quantum computation, entanglement and state reduction, Phil. Trans. R. Soc., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.

[27]

T. Saanouni, Strong instability of standing waves for the fractional Choquard equation, J. Math. Phys., 59 (2018), 081509. doi: 10.1063/1.5043473.

[28]

T. Saanouni, A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470 (2019), 1004-1029.  doi: 10.1016/j.jmaa.2018.10.045.

[29]

T. Saanouni, Potential well theory for the focusing fractional Choquard equation, J. Math. Phys., 61 (2020), 061502. doi: 10.1063/5.0002234.

[30]

Z. ShenF. Gao and M. Yang, Ground states for nonlinear fractional Choquard equations with general non-linearities, Math. Meth. App. Sci., 39 (2016), 4082-4098.  doi: 10.1002/mma.3849.

[31]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discr. Cont. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.

[32]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.

[33]

S. Zhu, Existence of Stable Standing Waves for the Fractional Schrödinger Equations with Combined Non-linearities, J. Evol. Equ., 17 (2017), 1003-1021.  doi: 10.1007/s00028-016-0363-1.

[1]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[2]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[3]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[4]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[5]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[6]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[7]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[8]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216

[9]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[10]

Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

[11]

Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289

[12]

Yan Deng, Junfang Zhao, Baozeng Chu. Symmetry of positive solutions for systems of fractional Hartree equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3085-3096. doi: 10.3934/dcdss.2021079

[13]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[14]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure and Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[15]

Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237

[16]

Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139

[17]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[18]

Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171

[19]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[20]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (169)
  • HTML views (199)
  • Cited by (0)

Other articles
by authors

[Back to Top]