doi: 10.3934/cpaa.2021124
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Energy scattering for the focusing fractional generalized Hartree equation

1. 

Departement of Mathematics, College of Sciences and Arts in Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia

2. 

University of Tunis El Manar, Faculty of Science of Tunis, LR03ES04 partial differential Equations and applications, 2092 Tunis, Tunisia

* Corresponding author

Received  February 2021 Revised  June 2021 Early access July 2021

This note studies the asymptotics of radial global solutions to the non-linear fractional Schrödinger equation
$ i\dot u-(-\Delta)^s u+|u|^{p-2}(I_\alpha *|u|^p)u = 0. $
Indeed, using a new method due to Dodson-Murphy [10], one proves that, in the inter-critical regime, under the ground state threshold, the radial global solutions scatter in the energy space.
Citation: Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021124
References:
[1]

R. Adams, Sobolev Spaces, Academic, New York, 1975.  Google Scholar

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow-up for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[3]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[4]

Y. Cho, G. Hwang and T. Ozawa, On the focusing energy-critical fractional nonlinear Schrödinger equations, Adv. Differ. Equ., 23, (2018), 161–192.  Google Scholar

[5]

Y. ChoG. Hwang and Y-S. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.  Google Scholar

[6]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.  doi: 10.1512/iumj.2013.62.4970.  Google Scholar

[7]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.  Google Scholar

[8]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[9]

P. D'aveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Model. Meth. Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.  Google Scholar

[10]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.  Google Scholar

[11]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[12]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.  Google Scholar

[13]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364.  doi: 10.1016/j.jmaa.2017.11.060.  Google Scholar

[14]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136.  doi: 10.1007/BF01214768.  Google Scholar

[15]

Z. GuoY. SireY. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 15 (2018), 265-282.  doi: 10.4310/dpde.2018.v15.n4.a2.  Google Scholar

[16]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[17]

J. Holmer and S. Roudenko, A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation, Commun. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[18]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201, (2008), 147–212. doi: 10.1007/s11511-008-0031-6.  Google Scholar

[19]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[20]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A., 268 (2000), 298-304.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[21]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[22]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.  Google Scholar

[23]

E. Lieb, Analysis, 2nd ed., Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.2307/3621022.  Google Scholar

[24]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[25]

C. Peng and D. Zhao, Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation, Discr. Contin. Dyn. Systems-B, 24 (2019), 3335-3356.  doi: 10.3934/dcdsb.2018323.  Google Scholar

[26]

R. Penrose, Quantum computation, entanglement and state reduction, Phil. Trans. R. Soc., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.  Google Scholar

[27]

T. Saanouni, Strong instability of standing waves for the fractional Choquard equation, J. Math. Phys., 59 (2018), 081509. doi: 10.1063/1.5043473.  Google Scholar

[28]

T. Saanouni, A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470 (2019), 1004-1029.  doi: 10.1016/j.jmaa.2018.10.045.  Google Scholar

[29]

T. Saanouni, Potential well theory for the focusing fractional Choquard equation, J. Math. Phys., 61 (2020), 061502. doi: 10.1063/5.0002234.  Google Scholar

[30]

Z. ShenF. Gao and M. Yang, Ground states for nonlinear fractional Choquard equations with general non-linearities, Math. Meth. App. Sci., 39 (2016), 4082-4098.  doi: 10.1002/mma.3849.  Google Scholar

[31]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discr. Cont. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[32]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.  Google Scholar

[33]

S. Zhu, Existence of Stable Standing Waves for the Fractional Schrödinger Equations with Combined Non-linearities, J. Evol. Equ., 17 (2017), 1003-1021.  doi: 10.1007/s00028-016-0363-1.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces, Academic, New York, 1975.  Google Scholar

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow-up for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[3]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[4]

Y. Cho, G. Hwang and T. Ozawa, On the focusing energy-critical fractional nonlinear Schrödinger equations, Adv. Differ. Equ., 23, (2018), 161–192.  Google Scholar

[5]

Y. ChoG. Hwang and Y-S. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.  Google Scholar

[6]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.  doi: 10.1512/iumj.2013.62.4970.  Google Scholar

[7]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.  Google Scholar

[8]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[9]

P. D'aveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Model. Meth. Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.  Google Scholar

[10]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.  Google Scholar

[11]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[12]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.  Google Scholar

[13]

B. Feng and H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364.  doi: 10.1016/j.jmaa.2017.11.060.  Google Scholar

[14]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136.  doi: 10.1007/BF01214768.  Google Scholar

[15]

Z. GuoY. SireY. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 15 (2018), 265-282.  doi: 10.4310/dpde.2018.v15.n4.a2.  Google Scholar

[16]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[17]

J. Holmer and S. Roudenko, A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation, Commun. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[18]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201, (2008), 147–212. doi: 10.1007/s11511-008-0031-6.  Google Scholar

[19]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[20]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A., 268 (2000), 298-304.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[21]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[22]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.  doi: 10.1007/s11040-007-9020-9.  Google Scholar

[23]

E. Lieb, Analysis, 2nd ed., Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.2307/3621022.  Google Scholar

[24]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[25]

C. Peng and D. Zhao, Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation, Discr. Contin. Dyn. Systems-B, 24 (2019), 3335-3356.  doi: 10.3934/dcdsb.2018323.  Google Scholar

[26]

R. Penrose, Quantum computation, entanglement and state reduction, Phil. Trans. R. Soc., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.  Google Scholar

[27]

T. Saanouni, Strong instability of standing waves for the fractional Choquard equation, J. Math. Phys., 59 (2018), 081509. doi: 10.1063/1.5043473.  Google Scholar

[28]

T. Saanouni, A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470 (2019), 1004-1029.  doi: 10.1016/j.jmaa.2018.10.045.  Google Scholar

[29]

T. Saanouni, Potential well theory for the focusing fractional Choquard equation, J. Math. Phys., 61 (2020), 061502. doi: 10.1063/5.0002234.  Google Scholar

[30]

Z. ShenF. Gao and M. Yang, Ground states for nonlinear fractional Choquard equations with general non-linearities, Math. Meth. App. Sci., 39 (2016), 4082-4098.  doi: 10.1002/mma.3849.  Google Scholar

[31]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discr. Cont. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[32]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.  Google Scholar

[33]

S. Zhu, Existence of Stable Standing Waves for the Fractional Schrödinger Equations with Combined Non-linearities, J. Evol. Equ., 17 (2017), 1003-1021.  doi: 10.1007/s00028-016-0363-1.  Google Scholar

[1]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[2]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[3]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[4]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[5]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216

[6]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[7]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[8]

Yan Deng, Junfang Zhao, Baozeng Chu. Symmetry of positive solutions for systems of fractional Hartree equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3085-3096. doi: 10.3934/dcdss.2021079

[9]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[10]

Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

[11]

Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289

[12]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[13]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure & Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[14]

Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237

[15]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[16]

Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139

[17]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[18]

Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171

[19]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[20]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (41)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]