doi: 10.3934/cpaa.2021125
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 546, Dhahran 31261, Saudi Arabia

* Corresponding author

Received  December 2020 Revised  June 2021 Early access July 2021

We consider the conserved phase-field system
$\left\{ \begin{array}{l}\tau {\phi _t} + N(\delta {\phi _t} + N\phi + g(\phi ) - u) = 0,\\\epsilon{u_t} + {\phi _t} + Nu = 0,\end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{S}}_\varepsilon }} \right)$
where
$ \tau>0 $
is a relaxation time,
$ \delta>0 $
is the viscosity parameter,
$ \epsilon\in (0,1] $
is the heat capacity,
$ \phi $
is the order parameter,
$ u $
is the absolute temperature, the Laplace operator
$ N = -\Delta:{\mathscr D}(N)\to \dot L^2(\Omega) $
is subject to either Neumann boundary conditions (in which case
$ \Omega\subset{\mathbb R}^d $
is a bounded domain with smooth boundary) or periodic boundary conditions (in which case
$ \Omega = \Pi_{i = 1}^d(0,L_i), $
$ L_i>0 $
),
$ d = 1,2 $
or 3, and
$ G(\phi) = \int_0^\phi g(\sigma)d\sigma $
is a double-well potential. Let
$ j = 1 $
when
$ d = 1 $
and
$ j = 2 $
when
$ d = 2 $
or 3. We assume that
$ g\in{\mathcal C}^{j+1}(\mathbb R) $
and satisfies the conditions
$ g'(\phi)\geq -{\mathscr C}_1 $
,
$ G(\phi)\ge -{\mathscr C}_2 $
and
$ (\phi-m(\phi))g(\phi)-{\mathscr C}_3(m(\phi))G(s)\ge -{\mathscr C}_4(m(\phi)) $
(
$ {\mathscr C}_5(\varrho)\le {\mathscr C}_l(m(\phi))\le {\mathscr C}_6(\varrho) $
,
$ l = 3,4 $
, whenever
$ |m(\phi)|\le \varrho $
), where
$ \varrho,{\mathscr C}_1, {\mathscr C}_2,{\mathscr C}_4\ge 0 $
,
$ {\mathscr C}_3, {\mathscr C}_5,{\mathscr C}_6>0 $
and
$ m(\phi) = \frac{1}{|\Omega|}\int_\Omega\phi(x)dx $
. For instance,
$ g(\phi) = \sum_{k = 1}^{2p-1}a_k\phi^k, $
$ p\in{\mathbb N}, $
$ p\ge 2, $
$ a_{2p-1}>0, $
satisfies all the above-mentioned conditions. We then prove a well-posedness result, the existence of the global attractor and a family of exponential attractors in the phase space
$ {\mathcal V}_j = {\mathscr D}(N^{j/2})\times{\mathscr D}(N^{j/2}) $
equipped with the norm
$ \|(\psi,\varphi)\|_{{\mathcal V}_{j}} = (\|N^{j/2}\psi\|^2+m(\psi)^2+\|N^{j/2}\varphi\|^2+m(\varphi)^2)^{1/2} $
. Moreover, we demonstrate that the global attractor is upper semicontinuous at
$ \epsilon = 0 $
in the metric induced by the norm
$ \|.\|_{{\mathcal V}_{j+1}} $
. In addition, the exponential attractors are proven to be Hölder continuous at
$ \epsilon = 0 $
in the metric induced by the norm
$ \|.\|_{{\mathcal V}_{j}} $
. Our results improve a recent work by Bonfoh and Enyi [Comm. Pure Appl. Anal. 2016; 35:1077-1105] where the following additional growth condition
$ |g''(\phi)|\leq {\mathscr C}_7\left(|\phi|^{p}+1\right), $
$ {\mathscr C}_7>0 $
,
$ p>0 $
is arbitrary when
$ d = 1, 2 $
and
$ p\in [0,3] $
when
$ d = 3 $
, was required, preventing
$ g $
to be a polynomial of any arbitrary odd degree with a strictly positive leading coefficient in three space dimension.
Citation: Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021125
References:
[1]

A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dyn. Differ. Equ., 7 (1995), 567-589.  doi: 10.1007/BF02218725.  Google Scholar

[2]

A. Bonfoh, Dynamics of the conserved phase-field system, Appl. Anal., 95 (2016), 44-62.  doi: 10.1080/00036811.2014.997225.  Google Scholar

[3]

A. Bonfoh and C. D. Enyi, Large time behavior of a conserved phase-field system, Comm. Pure Appl. Anal., 15 (2016), 1077-1105.  doi: 10.3934/cpaa.2016.15.1077.  Google Scholar

[4]

A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptotic Anal., 101 (2017), 97-148.  doi: 10.3233/ASY-161395.  Google Scholar

[5]

D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, Pitman Res. Notes Math. Ser., vol. 296, Longman Sci. Tech., Harlow, 1993, 77–85.  Google Scholar

[6]

D. BrochetD. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns, 1 (1996), 547-568.   Google Scholar

[7]

G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.   Google Scholar

[8]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dyn. Differ. Equ., 13 (2001), 791-806.  doi: 10.1023/A:1016676027666.  Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Masson, Paris, 1994.  Google Scholar

[10]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb R^3$, C. R. Math. Acad. Sci. Paris, 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.  doi: 10.1002/mana.200310186.  Google Scholar

[12]

C. M. Elliott and A. M. Stuart, The viscous Cahn-Hilliard equation. Ⅱ. Analysis, J. Differ. Equ., 128 (1996), 387-414.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[13]

S. GattiM. GrasselliA. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.  doi: 10.1090/S0002-9939-05-08340-1.  Google Scholar

[14]

S. GattiM. GrasselliA. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sci., 15 (2005), 165-198.  doi: 10.1142/S0218202505000327.  Google Scholar

[15]

G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161.   Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equ., 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

J. K. Hale and G. Raugel, Lower-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dyn. Differ. Equ., 2 (1990), 19-67.  doi: 10.1007/BF01047769.  Google Scholar

[19]

A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 145-150.  doi: 10.1016/S0764-4442(99)80153-0.  Google Scholar

[20]

A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152.  doi: 10.1016/j.jmaa.2012.11.038.  Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handb. Differ. Equ., 4 (2018), 103-200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[22]

G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., 7 (2008), 317-353.  doi: 10.3934/cpaa.2008.7.317.  Google Scholar

[23]

G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, Math. Models Methods Appl. Sci., 32 (2009), 2368-2404.  doi: 10.1002/mma.1139.  Google Scholar

[24]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics, Oxford Univ. Press, New York, 1988.  Google Scholar

[25]

G. Raugel, Singularly perturbed hyperbolic equations revisited, in International Conference on Differential Equations, World Sci. Publishing, River Edge, NJ, 2000.  Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

show all references

References:
[1]

A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dyn. Differ. Equ., 7 (1995), 567-589.  doi: 10.1007/BF02218725.  Google Scholar

[2]

A. Bonfoh, Dynamics of the conserved phase-field system, Appl. Anal., 95 (2016), 44-62.  doi: 10.1080/00036811.2014.997225.  Google Scholar

[3]

A. Bonfoh and C. D. Enyi, Large time behavior of a conserved phase-field system, Comm. Pure Appl. Anal., 15 (2016), 1077-1105.  doi: 10.3934/cpaa.2016.15.1077.  Google Scholar

[4]

A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptotic Anal., 101 (2017), 97-148.  doi: 10.3233/ASY-161395.  Google Scholar

[5]

D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, Pitman Res. Notes Math. Ser., vol. 296, Longman Sci. Tech., Harlow, 1993, 77–85.  Google Scholar

[6]

D. BrochetD. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns, 1 (1996), 547-568.   Google Scholar

[7]

G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.   Google Scholar

[8]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dyn. Differ. Equ., 13 (2001), 791-806.  doi: 10.1023/A:1016676027666.  Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Masson, Paris, 1994.  Google Scholar

[10]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb R^3$, C. R. Math. Acad. Sci. Paris, 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.  doi: 10.1002/mana.200310186.  Google Scholar

[12]

C. M. Elliott and A. M. Stuart, The viscous Cahn-Hilliard equation. Ⅱ. Analysis, J. Differ. Equ., 128 (1996), 387-414.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[13]

S. GattiM. GrasselliA. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.  doi: 10.1090/S0002-9939-05-08340-1.  Google Scholar

[14]

S. GattiM. GrasselliA. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sci., 15 (2005), 165-198.  doi: 10.1142/S0218202505000327.  Google Scholar

[15]

G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161.   Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equ., 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

J. K. Hale and G. Raugel, Lower-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dyn. Differ. Equ., 2 (1990), 19-67.  doi: 10.1007/BF01047769.  Google Scholar

[19]

A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 145-150.  doi: 10.1016/S0764-4442(99)80153-0.  Google Scholar

[20]

A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152.  doi: 10.1016/j.jmaa.2012.11.038.  Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handb. Differ. Equ., 4 (2018), 103-200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[22]

G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., 7 (2008), 317-353.  doi: 10.3934/cpaa.2008.7.317.  Google Scholar

[23]

G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, Math. Models Methods Appl. Sci., 32 (2009), 2368-2404.  doi: 10.1002/mma.1139.  Google Scholar

[24]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics, Oxford Univ. Press, New York, 1988.  Google Scholar

[25]

G. Raugel, Singularly perturbed hyperbolic equations revisited, in International Conference on Differential Equations, World Sci. Publishing, River Edge, NJ, 2000.  Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[1]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[2]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[3]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[4]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[5]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[6]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[7]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[8]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[9]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[10]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[11]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[12]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[13]

Alain Miranville. Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1971-1987. doi: 10.3934/cpaa.2014.13.1971

[14]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[15]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[16]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

[17]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[18]

Elisabetta Rocca, Giulio Schimperna. Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1193-1214. doi: 10.3934/dcds.2006.15.1193

[19]

Mirelson M. Freitas, Anderson J. A. Ramos, Baowei Feng, Mauro L. Santos, Helen C. M. Rodrigues. Existence and continuity of global attractors for ternary mixtures of solids. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021196

[20]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

2020 Impact Factor: 1.916

Article outline

[Back to Top]