[1]
|
E. N. Aksan, A numerical solution of Burgers' equation by finite element method constructed on the method of discretization in time, Appl. Math. Comput., 170 (2005), 895-904.
doi: 10.1016/j.amc.2004.12.027.
|
[2]
|
R. Alexande, Diagonally Implicit Runge-Kutta Methods for Stiff O.D.E.'s, SIAM J. Numer. Anal., 14 (1977), 1006-1021.
doi: 10.1137/0714068.
|
[3]
|
A. Ali, G. Gardner and L. Gardner, A collocation solution for Burgers' equation using cubic B-spline finite elements, Comput. Method. Appl. M., 100 (1992), 325-337.
doi: 10.1016/0045-7825(92)90088-2.
|
[4]
|
P. Arminjon and C. Beauchamp, A finite element method for Burgers' equation in hydrodynamics, Int. J. num. Meth. Eng, 12 (1978), 415-428.
doi: 10.1002/nme.1620120304.
|
[5]
|
P. Arminjon and C. Beauchamp, Continuous and discontinuous finite element methods for Burgers' equation, Comput. Methods Appl. M., 25 (1981), 65-84.
doi: 10.1016/0045-7825(81)90069-4.
|
[6]
|
S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, 3$^{rd}$ edition, Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0.
|
[7]
|
J. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), 171-199.
doi: 10.1016/S0065-2156(08)70100-5.
|
[8]
|
J. Burgers, Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion, Springer, Dordrecht, 1995.
doi: 10.1007/978-94-011-0195-0_10.
|
[9]
|
E. Burman, Error estimates for forward Euler shock capturing finite element approximations of the one-dimensional Burgers' equation, Math. Mod. Meth. Appl. S., 25 (2015), 2015-2042.
doi: 10.1142/S0218202515500517.
|
[10]
|
J. Caldwell, P. Wanless and A. Cook, A finite element approach to Burgers' equation, Appl. Math. Model., 5 (1981), 189-193.
doi: 10.1016/0307-904X(81)90043-3.
|
[11]
|
G. Chen and X. Xie, A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses, Comput. Meth. Appl. Mat., 16 (2016), 389-408.
doi: 10.1515/cmam-2016-0012.
|
[12]
|
H. Chen and Z. Jiang, A characteristics-mixed finite element method for Burgers' equation, J. Appl. Math. Comput., 15 (2004), 29-51.
doi: 10.1007/BF02935745.
|
[13]
|
H. Chen, P. Lu and X. Xu, A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Comput. Phys., 264 (2014), 133-151.
doi: 10.1016/j.jcp.2014.01.042.
|
[14]
|
Y. Chen and T. Zhang, A weak Galerkin finite element method for Burgers' equation, J. Comput. Appl. Math., 348 (2019), 103-109.
doi: 10.1016/j.cam.2018.08.044.
|
[15]
|
B. Cockburn, J. Gopalakrishnan and N. Nguyen, Analysis of HDG methods for Stokes flow, Math. Comput., 80 (2011), 723-760.
doi: 10.1090/S0025-5718-2010-02410-X.
|
[16]
|
A. Dogan, A Galerkin finite element approach to Burgers' equation, Appl. Math. Comput., 157 (2004), 331-346.
doi: 10.1016/j.amc.2003.08.037.
|
[17]
|
R. Guzzi and L. Stefanutti, The Role of Airflow in Airborne Transmission of COVID 19, Int. J. Biol. Sci., 4 (2021), 121-131.
doi: 10.13133/2532-5876/17224.
|
[18]
|
Y. Han, H. Chen, X. Wang and X. Xie, EXtended HDG methods for second order elliptic interface problems, J. Sci. Comput., 84 (2020), 22.
doi: 10.1007/s10915-020-01272-3.
|
[19]
|
J. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary Navier-Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022.
|
[20]
|
X. Hu, P. Huang and X. Feng, Two-Grid Method for Burgers' Equation by a New Mixed Finite Element Scheme, Math. Model. Anal., 19 (2014), 1-17.
doi: 10.3846/13926292.2014.892902.
|
[21]
|
X. Hu, P. Huang and X. Feng, A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation, Appl. Math-Czech., 61 (2016), 27-45.
doi: 10.1007/s10492-016-0120-3.
|
[22]
|
A. Hussein and H. Kashkool, Weak Galerkin finite element method for solving one-dimensional coupled Burgers' equations, J. Appl. Math. Comput., 63 (2020), 265-293.
doi: 10.1007/s12190-020-01317-8.
|
[23]
|
O. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), 641-665.
doi: 10.1137/05063979X.
|
[24]
|
S. Kutluay, A. Esen and I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167 (2004), 21-33.
doi: 10.1016/j.cam.2003.09.043.
|
[25]
|
B. Li and X. Xie, Analysis of a family of HDG methods for second order elliptic problems, J. Comput. Appl. Math., 307 (2016), 37-51.
doi: 10.1016/j.cam.2016.04.027.
|
[26]
|
C. W. Lucchi, Improvement of MacCormack's scheme for Burgers' equation. Using a finite element method, Int. J. num. Meth. Eng, 15 (1980), 537-555.
doi: 10.1002/nme.1620150406.
|
[27]
|
R. Mittal and A. Tripathi, Numerical solutions of two-dimensional Burgers' equations using modified Bi-cubic B-spline finite elements, Eng. Comput., 32 (2015), 1275-1306.
doi: 10.1108/EC-04-2014-0067.
|
[28]
|
N. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, J. Comput. Phys., 228 (2009), 3232-3254.
doi: 10.1016/j.jcp.2009.01.030.
|
[29]
|
N. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, J. Comput. Phys., 228 (2009), 8841-8855.
doi: 10.1016/j.jcp.2009.08.030.
|
[30]
|
T. Öziş, E. Aksan and A. Özdeş, A finite element approach for solution of Burgers' equation, Appl. Math. Comput., 139 (2003), 417-428.
doi: 10.1016/S0096-3003(02)00204-7.
|
[31]
|
A. Pany, N. Nataraj and S. Singh, A new mixed finite element method for Burgers' equation, J. Appl. Math. Comput., 23 (2007), 43-55.
doi: 10.1007/BF02831957.
|
[32]
|
W. Qiu, J. Shen and K. Shi, An HDG method for linear elasticity with strong symmetric stresses, Math. Comput., 87 (2016), 69-93.
doi: 10.1090/mcom/3249.
|
[33]
|
L. Shao, X. Feng and Y. He, The local discontinuous Galerkin finite element method for Burger's equation, Math. Comput. Model., 54 (2011), 2943-2954.
doi: 10.1016/j.mcm.2011.07.016.
|
[34]
|
D. Shi, J. Zhou and D. Shi, A new low order least squares nonconforming characteristics mixed finite element method for Burgers' equation, Appl. Math. Comput., 219 (2013), 11302-11310.
doi: 10.1016/j.amc.2013.05.037.
|
[35]
|
Z. Shi and M. Wang, Finite Element Methods, Science Press, Beijing, 2013.
|
[36]
|
H. Sterck, T. Manteuffel, S. Mccormick and L. Olson, Numerical conservation properities of H(div)-conforming least-squares finite element methods for the Burgers equation, SIAM J. Sci. Comput., 26 (2005), 1573-1597.
doi: 10.1137/S1064827503430758.
|
[37]
|
R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, 2$^{nd}$ edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4684-0313-8.
|
[38]
|
Y. Uçar, N. Yaǧmurlu and İ. Çelikkaya, Operator splitting for numerical solution of the modified Burgers' equation using finite element method, Numer. Meth. Part. D. E., 35 (2019), 478-492.
doi: 10.1002/num.22309.
|
[39]
|
J. Warga, Optimal Control of Differential and Functional Equations, 1st edition, Academic Press, New York, 1972.
doi: 10.1016/C2013-0-11669-8.
|
[40]
|
D. Winterscheidt and K. Surana, p-version least-squares finite element formulation of Burgers' equation, Int. J. num. Meth. Eng, 36 (2010), 3629-3646.
doi: 10.1002/nme.1620362105.
|
[41]
|
G. Zhao, X. Yu and R. Zhang, The new numerical method for solving the system of two-dimensional Burgers' equations, Comput. Math. Appl., 62 (2011), 3279-3291.
doi: 10.1016/j.camwa.2011.08.044.
|