• Previous Article
    Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential
  • CPAA Home
  • This Issue
  • Next Article
    Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment
doi: 10.3934/cpaa.2021135
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Bounds for subcritical best Sobolev constants in W1, p

Dip. di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Villa Toeplitz via G.B. Vico 46, 21100 Varese, Italy

Received  February 2021 Revised  June 2021 Early access August 2021

This paper aims at establishing fine bounds for subcritical best Sobolev constants of the embeddings
$ W_{0}^{1,p}(\Omega)\hookrightarrow L^{q}(\Omega),\quad 1\leq q< \begin{cases} \frac{Np}{N-p},& 1\leq p<N\\ \infty,& p = N \end{cases} $
where
$ N\geq p\geq1 $
and
$ \Omega $
is a bounded smooth domain in
$ \mathbb{R}^{N} $
or the whole space. The Sobolev limiting case
$ p = N $
is also covered by means of a limiting procedure.
Citation: Lele Du. Bounds for subcritical best Sobolev constants in W1, p. Communications on Pure &amp; Applied Analysis, doi: 10.3934/cpaa.2021135
References:
[1]

P. d'Avenia and C. Ji, Semiclassical states for a magnetic nonlinear Schrödinger equation with exponentical critical growth in $\mathbb{R}^{2}$, preprint, arXiv: 2106.05962. doi: 10.1016/j.na.2016.12.004.  Google Scholar

[2]

A. Alvino, A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli, 44 (1977), 105-112.   Google Scholar

[3]

C. O. Alves and S. H. M. Souto, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differential Equations, 234 (2007), 464-484.  doi: 10.1016/j.jde.2006.12.006.  Google Scholar

[4]

C. O. AlvesM. A. S. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differ. Equ., 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.  Google Scholar

[5]

T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11 (1976), 573-598.   Google Scholar

[6]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

G. CeramiD. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 341-350.   Google Scholar

[8]

D. CassaniB. Ruf and C. Tarsi, Optimal Sobolev type inequalities in Lorentz spaces, Potential Anal., 39 (2013), 265-285.  doi: 10.1007/s11118-012-9329-2.  Google Scholar

[9]

D. CassaniF. Sani and C. Tarsi, Equivalent Moser type inequalities in $\mathbb{R}^{2}$ and the zero mass case, J. Funct. Anal., 267 (2014), 4236-4263.  doi: 10.1016/j.jfa.2014.09.022.  Google Scholar

[10]

D. CassaniC. Tarsi and J. Zhang, Bounds for best constants in subcritical Sobolev embeddings, Nonlinear Anal., 187 (2019), 438-449.  doi: 10.1016/j.na.2019.05.012.  Google Scholar

[11]

X. Chen and J. Yang, Improved Sobolev inequalities and critical problems, Commun. Pure Appl. Anal., 19 (2020), 3673-3695.  doi: 10.3934/cpaa.2020162.  Google Scholar

[12]

V. G. Maz'ya, Classes of domains and imbedding theorems for function spaces, Soviet Math. Dokl., 1 (1960), 882-885.   Google Scholar

[13]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[14]

J. M. do Ó and S. M. Souto, On a class of nonlinear Schrödinger equations in $\mathbb{R}^{2}$ involving critical growth, J. Differ. Equ., 20 (2001), 289-311.  doi: 10.1006/jdeq.2000.3946.  Google Scholar

[15]

S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.   Google Scholar

[16]

P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[17]

X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343 (1994), 749-763.  doi: 10.2307/2154740.  Google Scholar

[18]

X. Ren and J. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differ. Equ., 117 (1995), 28-55.  doi: 10.1006/jdeq.1995.1047.  Google Scholar

[19]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[20]

G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

show all references

References:
[1]

P. d'Avenia and C. Ji, Semiclassical states for a magnetic nonlinear Schrödinger equation with exponentical critical growth in $\mathbb{R}^{2}$, preprint, arXiv: 2106.05962. doi: 10.1016/j.na.2016.12.004.  Google Scholar

[2]

A. Alvino, A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli, 44 (1977), 105-112.   Google Scholar

[3]

C. O. Alves and S. H. M. Souto, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differential Equations, 234 (2007), 464-484.  doi: 10.1016/j.jde.2006.12.006.  Google Scholar

[4]

C. O. AlvesM. A. S. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differ. Equ., 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.  Google Scholar

[5]

T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11 (1976), 573-598.   Google Scholar

[6]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

G. CeramiD. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 341-350.   Google Scholar

[8]

D. CassaniB. Ruf and C. Tarsi, Optimal Sobolev type inequalities in Lorentz spaces, Potential Anal., 39 (2013), 265-285.  doi: 10.1007/s11118-012-9329-2.  Google Scholar

[9]

D. CassaniF. Sani and C. Tarsi, Equivalent Moser type inequalities in $\mathbb{R}^{2}$ and the zero mass case, J. Funct. Anal., 267 (2014), 4236-4263.  doi: 10.1016/j.jfa.2014.09.022.  Google Scholar

[10]

D. CassaniC. Tarsi and J. Zhang, Bounds for best constants in subcritical Sobolev embeddings, Nonlinear Anal., 187 (2019), 438-449.  doi: 10.1016/j.na.2019.05.012.  Google Scholar

[11]

X. Chen and J. Yang, Improved Sobolev inequalities and critical problems, Commun. Pure Appl. Anal., 19 (2020), 3673-3695.  doi: 10.3934/cpaa.2020162.  Google Scholar

[12]

V. G. Maz'ya, Classes of domains and imbedding theorems for function spaces, Soviet Math. Dokl., 1 (1960), 882-885.   Google Scholar

[13]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[14]

J. M. do Ó and S. M. Souto, On a class of nonlinear Schrödinger equations in $\mathbb{R}^{2}$ involving critical growth, J. Differ. Equ., 20 (2001), 289-311.  doi: 10.1006/jdeq.2000.3946.  Google Scholar

[15]

S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.   Google Scholar

[16]

P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[17]

X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343 (1994), 749-763.  doi: 10.2307/2154740.  Google Scholar

[18]

X. Ren and J. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differ. Equ., 117 (1995), 28-55.  doi: 10.1006/jdeq.1995.1047.  Google Scholar

[19]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[20]

G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

[1]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[2]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[3]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[4]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[5]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure &amp; Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[6]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure &amp; Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[7]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[8]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[9]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021, 11 (3) : 479-498. doi: 10.3934/mcrf.2021009

[10]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[11]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure &amp; Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[12]

Jochen Merker. Generalizations of logarithmic Sobolev inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 329-338. doi: 10.3934/dcdss.2008.1.329

[13]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[14]

Xiaoli Chen, Jianfu Yang. Improved Sobolev inequalities and critical problems. Communications on Pure &amp; Applied Analysis, 2020, 19 (7) : 3673-3695. doi: 10.3934/cpaa.2020162

[15]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[16]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[17]

Christopher Rackauckas, Qing Nie. Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2731-2761. doi: 10.3934/dcdsb.2017133

[18]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[19]

Marita Thomas. Uniform Poincaré-Sobolev and isoperimetric inequalities for classes of domains. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2741-2761. doi: 10.3934/dcds.2015.35.2741

[20]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure &amp; Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

2020 Impact Factor: 1.916

Article outline

[Back to Top]