American Institute of Mathematical Sciences

• Previous Article
Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model
• CPAA Home
• This Issue
• Next Article
Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations
doi: 10.3934/cpaa.2021136
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Limit cycles of piecewise polynomial differential systems with the discontinuity line xy = 0

 1 School of Economic Mathematics, Southwestern University of Finance and Economics, 611130 Chengdu, Sichuan, China 2 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

* Corresponding author

Received  April 2021 Revised  July 2021 Early access August 2021

Fund Project: The first author is supported by the grant CSC #201906240094 from the P.R. China. The second author is partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911

In this paper we study the maximum number of limit cycles bifurcating from the periodic orbits of the center $\dot x = -y((x^2+y^2)/2)^m, \dot y = x((x^2+y^2)/2)^m$ with $m\ge0$ under discontinuous piecewise polynomial (resp. polynomial Hamiltonian) perturbations of degree $n$ with the discontinuity set $\{(x, y)\in\mathbb{R}^2: xy = 0\}$. Using the averaging theory up to any order $N$, we give upper bounds for the maximum number of limit cycles in the function of $m, n, N$. More importantly, employing the higher order averaging method we provide new lower bounds of the maximum number of limit cycles for several types of piecewise polynomial systems, which improve the results of the previous works. Besides, we explore the effect of 4-star-symmetry on the maximum number of limit cycles bifurcating from the unperturbed periodic orbits. Our result implies that 4-star-symmetry almost halves the maximum number.

Citation: Tao Li, Jaume Llibre. Limit cycles of piecewise polynomial differential systems with the discontinuity line xy = 0. Communications on Pure &amp; Applied Analysis, doi: 10.3934/cpaa.2021136
References:
 [1] V.I. Arnold, Ten problems, Adv. Soviet Math. 1 (1990), 1–8.  Google Scholar [2] I. S. Berezin and N. P. Zhidkov, Computing Methods, Reading, Mass. London, 1965.  Google Scholar [3] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical systems: Theory and Applications, Applied Mathematical Sciences, Springer Verlag, London, 2008.  Google Scholar [4] A. Buic${\rm\breve{a}}$, J. Giné and J. Llibre, Bifurcation of limit cycles from a polynomial degenerate center, Adv. Nonlinear Stud., 10 (2010), 597–609. doi: 10.1515/ans-2010-0305.  Google Scholar [5] C. A. Buzzi, M. F. S. Lima and J. Torregrosa, Limit cycles via higher order perturbations for some piecewise differential systems, Physica D, 371 (2018), 28–47. doi: 10.1016/j.physd.2018.01.007.  Google Scholar [6] C. A. Buzzi, J. C. Medrado and J. Torregrosa, Limit cycles in 4-star-symmetric planar piecewise linear systems, J. Differ. Equ., 268 (2020), 2414–2434. doi: 10.1016/j.jde.2019.09.008.  Google Scholar [7] C. A. Buzzi, C. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 9 (2013), 3915–3936. doi: 10.3934/dcds.2013.33.3915.  Google Scholar [8] P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems with nonregular separation line, Physica D, 337 (2016), 67–82. doi: 10.1016/j.physd.2016.07.008.  Google Scholar [9] T. de Carvalho, J. Llibre and D. J. Tonon, Limit cycles of discontinuous piecewise polynomial vector fields, J. Math. Anal. Appl., 449 (2017), 572–579. doi: 10.1016/j.jmaa.2016.11.048.  Google Scholar [10] G. Dong and C. Liu, Note on limit cycles for m-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 68 (2017), No. 97. doi: 10.1007/s00033-017-0844-2.  Google Scholar [11] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar [12] A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky. Mountain J. Math., 31 (2001), 1277–1303. doi: 10.1216/rmjm/1021249441.  Google Scholar [13] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 7 (2017), 788–794. doi: 10.11948/2017049.  Google Scholar [14] I. D. Iliev, The number of limit cycles due to polynomial perturbations of the harmonic oscillator, Math. Proc. Cambridge Philos. Soc., 127 (1999), 317–322. doi: 10.1017/S0305004199003795.  Google Scholar [15] J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, Rev. Mat. Iberoam., 33 (2017), 1247–1265. doi: 10.4171/RMI/970.  Google Scholar [16] Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One parameter bifurcations in planar Filippov systems, Int. J. Bifur. Chaos, 13 (2003), 2157–2188. doi: 10.1142/S0218127403007874.  Google Scholar [17] J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos, 13 (2003), 47–106. doi: 10.1142/S0218127403006352.  Google Scholar [18] T. Li and J. Llibre, Limit cycles in piecewise polynomial systems allowing a non-regular switching boundary, Physica D, 419 (2021), 132855. doi: 10.1016/j.physd.2021.132855.  Google Scholar [19] T. Li and J. Llibre, On the 16th Hilbert problem for discontinuous piecewise polynomial Hamiltonian systems, J. Dyn. Differ. Equ., (2021) 16pp doi: https://doi.org/10.1007/s10884-021-09967-3.  Google Scholar [20] A. Lins Neto, W. de Melo and C. C. Pugh, On Liénard equations, in: Proc. Symp. Geom. and topol, in: Lectures Notes in Math., vol. 597, Springer-Verlag, 1977, pp. 335–357.  Google Scholar [21] S. Liu and M. Han, Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 3115–3124. doi: 10.3934/dcdss.2020133.  Google Scholar [22] J. Llibre, D. D. Novaes and C. A. B. Rodrigues, Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D, 353-354 (2017), 1–10. doi: 10.1016/j.physd.2017.05.003.  Google Scholar [23] J. Llibre and Y. Tang, Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1769–1784. doi: 10.3934/dcdsb.2018236.  Google Scholar [24] J. Llibre and M. A. Teixeira, Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 66 (2015), 51–66. doi: 10.1007/s00033-013-0393-2.  Google Scholar [25] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: a survey, Physica D, 241 (2012), 1826–1844. doi: 10.1016/j.physd.2012.08.002.  Google Scholar [26] Y. Wang, M. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos, Solitons and Fractals, 83 (2016), 158–177. doi: 10.1016/j.chaos.2015.11.041.  Google Scholar [27] L. Wei and X. Zhang, Averaging theory of arbitrary order for piecewise smooth differential systems and its application, J. Dyn. Differ. Equ., 30 (2018), 55–79. doi: 10.1007/s10884-016-9534-6.  Google Scholar [28] Y. Xiong, Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters, Nonlin. Anal. Real World Appl., 41 (2018) 384–400. doi: 10.1016/j.nonrwa.2017.10.020.  Google Scholar [29] J. Yang, M. Han and W. Huang, On Hopf bifurcations of piecewise Hamiltonian systems, J. Differ. Equ., 250 (2011), 1026–1051. doi: 10.1016/j.jde.2010.06.012.  Google Scholar

show all references

References:
 [1] V.I. Arnold, Ten problems, Adv. Soviet Math. 1 (1990), 1–8.  Google Scholar [2] I. S. Berezin and N. P. Zhidkov, Computing Methods, Reading, Mass. London, 1965.  Google Scholar [3] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical systems: Theory and Applications, Applied Mathematical Sciences, Springer Verlag, London, 2008.  Google Scholar [4] A. Buic${\rm\breve{a}}$, J. Giné and J. Llibre, Bifurcation of limit cycles from a polynomial degenerate center, Adv. Nonlinear Stud., 10 (2010), 597–609. doi: 10.1515/ans-2010-0305.  Google Scholar [5] C. A. Buzzi, M. F. S. Lima and J. Torregrosa, Limit cycles via higher order perturbations for some piecewise differential systems, Physica D, 371 (2018), 28–47. doi: 10.1016/j.physd.2018.01.007.  Google Scholar [6] C. A. Buzzi, J. C. Medrado and J. Torregrosa, Limit cycles in 4-star-symmetric planar piecewise linear systems, J. Differ. Equ., 268 (2020), 2414–2434. doi: 10.1016/j.jde.2019.09.008.  Google Scholar [7] C. A. Buzzi, C. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 9 (2013), 3915–3936. doi: 10.3934/dcds.2013.33.3915.  Google Scholar [8] P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems with nonregular separation line, Physica D, 337 (2016), 67–82. doi: 10.1016/j.physd.2016.07.008.  Google Scholar [9] T. de Carvalho, J. Llibre and D. J. Tonon, Limit cycles of discontinuous piecewise polynomial vector fields, J. Math. Anal. Appl., 449 (2017), 572–579. doi: 10.1016/j.jmaa.2016.11.048.  Google Scholar [10] G. Dong and C. Liu, Note on limit cycles for m-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 68 (2017), No. 97. doi: 10.1007/s00033-017-0844-2.  Google Scholar [11] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar [12] A. Gasull and J. Torregrosa, A relation between small amplitude and big limit cycles, Rocky. Mountain J. Math., 31 (2001), 1277–1303. doi: 10.1216/rmjm/1021249441.  Google Scholar [13] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 7 (2017), 788–794. doi: 10.11948/2017049.  Google Scholar [14] I. D. Iliev, The number of limit cycles due to polynomial perturbations of the harmonic oscillator, Math. Proc. Cambridge Philos. Soc., 127 (1999), 317–322. doi: 10.1017/S0305004199003795.  Google Scholar [15] J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, Rev. Mat. Iberoam., 33 (2017), 1247–1265. doi: 10.4171/RMI/970.  Google Scholar [16] Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One parameter bifurcations in planar Filippov systems, Int. J. Bifur. Chaos, 13 (2003), 2157–2188. doi: 10.1142/S0218127403007874.  Google Scholar [17] J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos, 13 (2003), 47–106. doi: 10.1142/S0218127403006352.  Google Scholar [18] T. Li and J. Llibre, Limit cycles in piecewise polynomial systems allowing a non-regular switching boundary, Physica D, 419 (2021), 132855. doi: 10.1016/j.physd.2021.132855.  Google Scholar [19] T. Li and J. Llibre, On the 16th Hilbert problem for discontinuous piecewise polynomial Hamiltonian systems, J. Dyn. Differ. Equ., (2021) 16pp doi: https://doi.org/10.1007/s10884-021-09967-3.  Google Scholar [20] A. Lins Neto, W. de Melo and C. C. Pugh, On Liénard equations, in: Proc. Symp. Geom. and topol, in: Lectures Notes in Math., vol. 597, Springer-Verlag, 1977, pp. 335–357.  Google Scholar [21] S. Liu and M. Han, Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 3115–3124. doi: 10.3934/dcdss.2020133.  Google Scholar [22] J. Llibre, D. D. Novaes and C. A. B. Rodrigues, Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D, 353-354 (2017), 1–10. doi: 10.1016/j.physd.2017.05.003.  Google Scholar [23] J. Llibre and Y. Tang, Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1769–1784. doi: 10.3934/dcdsb.2018236.  Google Scholar [24] J. Llibre and M. A. Teixeira, Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 66 (2015), 51–66. doi: 10.1007/s00033-013-0393-2.  Google Scholar [25] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: a survey, Physica D, 241 (2012), 1826–1844. doi: 10.1016/j.physd.2012.08.002.  Google Scholar [26] Y. Wang, M. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos, Solitons and Fractals, 83 (2016), 158–177. doi: 10.1016/j.chaos.2015.11.041.  Google Scholar [27] L. Wei and X. Zhang, Averaging theory of arbitrary order for piecewise smooth differential systems and its application, J. Dyn. Differ. Equ., 30 (2018), 55–79. doi: 10.1007/s10884-016-9534-6.  Google Scholar [28] Y. Xiong, Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters, Nonlin. Anal. Real World Appl., 41 (2018) 384–400. doi: 10.1016/j.nonrwa.2017.10.020.  Google Scholar [29] J. Yang, M. Han and W. Huang, On Hopf bifurcations of piecewise Hamiltonian systems, J. Differ. Equ., 250 (2011), 1026–1051. doi: 10.1016/j.jde.2010.06.012.  Google Scholar
 [1] Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133 [2] Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 [3] Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 [4] Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119 [5] Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 [6] Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 [7] Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019 [8] Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236 [9] Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 [10] Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368 [11] Min Li, Maoan Han. On the number of limit cycles of a quartic polynomial system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3167-3181. doi: 10.3934/dcdss.2020337 [12] Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 [13] Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 [14] Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203 [15] Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $S_n$-symmetry. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823 [16] Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 [17] Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 [18] Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 [19] Weina Wang, Chunlin Wu, Jiansong Deng. Piecewise constant signal and image denoising using a selective averaging method with multiple neighbors. Inverse Problems & Imaging, 2019, 13 (5) : 903-930. doi: 10.3934/ipi.2019041 [20] Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497

2020 Impact Factor: 1.916

Article outline