• Previous Article
    Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
  • CPAA Home
  • This Issue
  • Next Article
    Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence
doi: 10.3934/cpaa.2021137
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Dynamics of solutions to a semilinear plate equation with memory

1. 

Department of Mathematics, Yibin University, Yibin, Sichuan, 644000, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

* Corresponding author

Received  March 2021 Revised  July 2021 Early access August 2021

Fund Project: The work of Jinxing Liu is supported by the Talent project of Yibin University (No. 2018RC17), and the work of Jun Zhou is supported by the Basic and Advanced Research Project of CQC-STC grant cstc2016jcyjA0018, NSFC 11201380

In this paper we consider an initial-boundary value problem of a semilinear regularity-loss-type plate equation with memory in a bounded domain of $ \mathbb{R}^n $ ($ n = 1,2,\cdots $). By using the Faedo-Galërkin method and some theories of ordinary differential equations, we obtain the local existence and uniqueness of weak solutions. Then, we study the dynamics of the weak solutions, such as global existence and finite time blow-up, by energy estimation and some ordinary differential inequalities. Moreover, the upper bound of blow-up time for the blow-up solutions is also considered.

Citation: Jinxing Liu, Xiongrui Wang, Jun Zhou, Xu Liu. Dynamics of solutions to a semilinear plate equation with memory. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021137
References:
[1]

Nouri Boumaza and Billel Gheraibia, General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term, J. Math. Anal. Appl., 489 (2020), 124185. doi: 10.1016/j.jmaa.2020.124185.  Google Scholar

[2]

Wenhui Chen and Tuan Anh Dao, On the Cauchy problem for semilinear regularity-loss-type $\sigma$-evolution models with memory term, Nonlinear Anal. Real World Appl., 59 (2021), 103265. doi: 10.1016/j.nonrwa.2020.103265.  Google Scholar

[3]

Marcelo Moreira Cavalcanti and Higidio Portillo Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.  doi: 10.1137/s0363012902408010.  Google Scholar

[4]

Cleverson Roberto da Luz and Ruy Coimbra Charão, Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Differ. Equ., 6 (2009), 269-294.  doi: 10.1142/S0219891609001824.  Google Scholar

[5]

Priyanjana M. N. DharmawardaneTohru Nakamura and Shuichi Kawashima, Decay estimates of solutions for quasi-linear hyperbolic systems of viscoelasticity, SIAM J. Math. Anal., 44 (2012), 1976-2001.  doi: 10.1137/11083900x.  Google Scholar

[6]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.  Google Scholar

[7]

A. GuesmiaS. A. Messaoudi and C. M. Webler, Well-posedness and optimal decay rates for the viscoelastic Kirchhoff equation, Bol. Soc. Parana. Mat., 35 (2017), 203-224.  doi: 10.5269/bspm.v35i3.31395.  Google Scholar

[8]

Aissa Guesmia and Salim A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[9]

Jamilu Hashim Hassan and Salim A. Messaoudi, General decay estimate for a class of weakly dissipative second-order system with memory, Math. Meth. Appl. Sci., 42, (2019), 2842–2853. doi: 10.1002/mma.5554.  Google Scholar

[10]

Jamilu Hashim Hassan and Salim A. Messaoudi, A note on the polynomial decay of a weakly dissipative viscoelastic system, Math. Nachr., 293 (2020), 1961-1967.  doi: 10.1002/mana.201900182.  Google Scholar

[11]

Jum-Ran Kang, General stability of solutions for a viscoelastic wave equations of Kirchhoff type with acoustic boundary conditions, Math. Methods Appl. Sci., 39 (2016), 2953-2964.  doi: 10.1002/mma.3742.  Google Scholar

[12]

Howard A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.1090/S0002-9947-1974-0344697-2.  Google Scholar

[13]

Howard A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[14]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites non Linéaires, Gauthier-Villars, Paris, 1969. Google Scholar

[15]

Yongqin Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616-632.  doi: 10.1016/j.jmaa.2012.04.003.  Google Scholar

[16]

Yongqin Liu, Asymptotic behavior of solutions to a nonlinear plate equation with memory, Commun. Pure Appl. Anal., 16 (2017), 533-556.  doi: 10.3934/cpaa.2017027.  Google Scholar

[17]

Yongqin Liu and Shuichi Kawashima, Decay property for a plate equation with memory-type dissipation, Kinet. Relat. Models, 4 (2011), 531-547.  doi: 10.1007/978-3-540-75712-2_19.  Google Scholar

[18]

Yongqin Liu and Shuichi Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.  doi: 10.1007/978-3-540-75712-2_19.  Google Scholar

[19]

Yongqin Liu and Shuichi Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differ. Equ., 8 (2011), 591-614.  doi: 10.1142/S0219891611002500.  Google Scholar

[20]

Yongqin Liu and Shuichi Kawashima, Decay property for the Timoshenko system with memory-type dissipation, Math. Models Methods Appl. Sci., 22 (2012), 1150012. doi: 10.1142/S0218202511500126.  Google Scholar

[21]

Yongqin Liu and Yoshihiro Ueda, Decay estimate and asymptotic profile for a plate equation with memory, J. Differ. Equ., 268 (2020), 2435-2463.  doi: 10.1016/j.jde.2019.09.007.  Google Scholar

[22]

Salim A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[23]

Salim A. Messaoudi and Muhammad M. Al-Gharabli, A general stability result for a nonlinear wave equation with infinite memory, Appl. Math. Lett., 26 (2013), 1082-1086.  doi: 10.1016/j.aml.2013.06.002.  Google Scholar

[24]

Sun-Hye ParkMi Jin Lee and Jum-Ran Kang, Blow-up results for viscoelastic wave equations with weak damping, Appl. Math. Lett., 80 (2018), 20-26.  doi: 10.1016/j.aml.2018.01.002.  Google Scholar

[25]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447-478.  doi: 10.1007/s00245-017-9471-8.  Google Scholar

[26]

Reinhard Racke and Yoshihiro Ueda, Dissipative structures for thermoelastic plate equations in ${\mathbb{R}^n}$, Adv. Differ. Equ., 21 (2016), 601–630. Google Scholar

[27]

J. E. Munoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[28]

J. E. Munoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated to weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[29]

Haitao Song and Chengkui Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883.  doi: 10.1016/j.nonrwa.2010.02.015.  Google Scholar

[30]

Yousuke Sugitani and Shuichi Kawashima, Decay estimates of solutions to a semilinear dissipative plate equation, J. Hyperbolic Differ. Equ., 7 (2010), 471-501.  doi: 10.1142/S0219891610002207.  Google Scholar

[31]

Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, in Applied Mathematical Sciences, Springer-Verlag, New York, 1997. doi: https://link.springer.com/book/10.1007/978-1-4684-0313-8.  Google Scholar

[32]

Yoshihiro Ueda, Optimal decay estimates of a regularity-loss type system with constraint condition, J. Differ. Equ., 264 (2018), 679-701.  doi: 10.1016/j.jde.2017.09.020.  Google Scholar

[33]

Yoshihiro UedaRenjun Duan and Shuichi Kawashima, Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application, Arch. Ration. Mech. Anal., 205 (2012), 239-266.  doi: 10.1007/s00205-012-0508-5.  Google Scholar

[34]

Shun-Tang Wu, Exponential energy decay of solutions for an integro-differential equation with strong damping, J. Math. Anal. Appl., 364 (2010), 609-617.  doi: 10.1016/j.jmaa.2009.11.046.  Google Scholar

[35]

Zhifeng Yang and Zhaogang Gong, Blow-up solutions for viscoelastic equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ., 2016 (2016), 1–12. Google Scholar

[36]

Songmu Zheng, Nonlinear Evolution Equations, in Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: https://www.routledge.com/Nonlinear-Evolution-Equations/Zheng/p/book/9781584884521.  Google Scholar

show all references

References:
[1]

Nouri Boumaza and Billel Gheraibia, General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term, J. Math. Anal. Appl., 489 (2020), 124185. doi: 10.1016/j.jmaa.2020.124185.  Google Scholar

[2]

Wenhui Chen and Tuan Anh Dao, On the Cauchy problem for semilinear regularity-loss-type $\sigma$-evolution models with memory term, Nonlinear Anal. Real World Appl., 59 (2021), 103265. doi: 10.1016/j.nonrwa.2020.103265.  Google Scholar

[3]

Marcelo Moreira Cavalcanti and Higidio Portillo Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.  doi: 10.1137/s0363012902408010.  Google Scholar

[4]

Cleverson Roberto da Luz and Ruy Coimbra Charão, Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Differ. Equ., 6 (2009), 269-294.  doi: 10.1142/S0219891609001824.  Google Scholar

[5]

Priyanjana M. N. DharmawardaneTohru Nakamura and Shuichi Kawashima, Decay estimates of solutions for quasi-linear hyperbolic systems of viscoelasticity, SIAM J. Math. Anal., 44 (2012), 1976-2001.  doi: 10.1137/11083900x.  Google Scholar

[6]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.  Google Scholar

[7]

A. GuesmiaS. A. Messaoudi and C. M. Webler, Well-posedness and optimal decay rates for the viscoelastic Kirchhoff equation, Bol. Soc. Parana. Mat., 35 (2017), 203-224.  doi: 10.5269/bspm.v35i3.31395.  Google Scholar

[8]

Aissa Guesmia and Salim A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[9]

Jamilu Hashim Hassan and Salim A. Messaoudi, General decay estimate for a class of weakly dissipative second-order system with memory, Math. Meth. Appl. Sci., 42, (2019), 2842–2853. doi: 10.1002/mma.5554.  Google Scholar

[10]

Jamilu Hashim Hassan and Salim A. Messaoudi, A note on the polynomial decay of a weakly dissipative viscoelastic system, Math. Nachr., 293 (2020), 1961-1967.  doi: 10.1002/mana.201900182.  Google Scholar

[11]

Jum-Ran Kang, General stability of solutions for a viscoelastic wave equations of Kirchhoff type with acoustic boundary conditions, Math. Methods Appl. Sci., 39 (2016), 2953-2964.  doi: 10.1002/mma.3742.  Google Scholar

[12]

Howard A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.1090/S0002-9947-1974-0344697-2.  Google Scholar

[13]

Howard A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[14]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites non Linéaires, Gauthier-Villars, Paris, 1969. Google Scholar

[15]

Yongqin Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616-632.  doi: 10.1016/j.jmaa.2012.04.003.  Google Scholar

[16]

Yongqin Liu, Asymptotic behavior of solutions to a nonlinear plate equation with memory, Commun. Pure Appl. Anal., 16 (2017), 533-556.  doi: 10.3934/cpaa.2017027.  Google Scholar

[17]

Yongqin Liu and Shuichi Kawashima, Decay property for a plate equation with memory-type dissipation, Kinet. Relat. Models, 4 (2011), 531-547.  doi: 10.1007/978-3-540-75712-2_19.  Google Scholar

[18]

Yongqin Liu and Shuichi Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.  doi: 10.1007/978-3-540-75712-2_19.  Google Scholar

[19]

Yongqin Liu and Shuichi Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differ. Equ., 8 (2011), 591-614.  doi: 10.1142/S0219891611002500.  Google Scholar

[20]

Yongqin Liu and Shuichi Kawashima, Decay property for the Timoshenko system with memory-type dissipation, Math. Models Methods Appl. Sci., 22 (2012), 1150012. doi: 10.1142/S0218202511500126.  Google Scholar

[21]

Yongqin Liu and Yoshihiro Ueda, Decay estimate and asymptotic profile for a plate equation with memory, J. Differ. Equ., 268 (2020), 2435-2463.  doi: 10.1016/j.jde.2019.09.007.  Google Scholar

[22]

Salim A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[23]

Salim A. Messaoudi and Muhammad M. Al-Gharabli, A general stability result for a nonlinear wave equation with infinite memory, Appl. Math. Lett., 26 (2013), 1082-1086.  doi: 10.1016/j.aml.2013.06.002.  Google Scholar

[24]

Sun-Hye ParkMi Jin Lee and Jum-Ran Kang, Blow-up results for viscoelastic wave equations with weak damping, Appl. Math. Lett., 80 (2018), 20-26.  doi: 10.1016/j.aml.2018.01.002.  Google Scholar

[25]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447-478.  doi: 10.1007/s00245-017-9471-8.  Google Scholar

[26]

Reinhard Racke and Yoshihiro Ueda, Dissipative structures for thermoelastic plate equations in ${\mathbb{R}^n}$, Adv. Differ. Equ., 21 (2016), 601–630. Google Scholar

[27]

J. E. Munoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[28]

J. E. Munoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated to weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[29]

Haitao Song and Chengkui Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883.  doi: 10.1016/j.nonrwa.2010.02.015.  Google Scholar

[30]

Yousuke Sugitani and Shuichi Kawashima, Decay estimates of solutions to a semilinear dissipative plate equation, J. Hyperbolic Differ. Equ., 7 (2010), 471-501.  doi: 10.1142/S0219891610002207.  Google Scholar

[31]

Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, in Applied Mathematical Sciences, Springer-Verlag, New York, 1997. doi: https://link.springer.com/book/10.1007/978-1-4684-0313-8.  Google Scholar

[32]

Yoshihiro Ueda, Optimal decay estimates of a regularity-loss type system with constraint condition, J. Differ. Equ., 264 (2018), 679-701.  doi: 10.1016/j.jde.2017.09.020.  Google Scholar

[33]

Yoshihiro UedaRenjun Duan and Shuichi Kawashima, Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application, Arch. Ration. Mech. Anal., 205 (2012), 239-266.  doi: 10.1007/s00205-012-0508-5.  Google Scholar

[34]

Shun-Tang Wu, Exponential energy decay of solutions for an integro-differential equation with strong damping, J. Math. Anal. Appl., 364 (2010), 609-617.  doi: 10.1016/j.jmaa.2009.11.046.  Google Scholar

[35]

Zhifeng Yang and Zhaogang Gong, Blow-up solutions for viscoelastic equations of Kirchhoff type with arbitrary positive initial energy, Electron. J. Differ. Equ., 2016 (2016), 1–12. Google Scholar

[36]

Songmu Zheng, Nonlinear Evolution Equations, in Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: https://www.routledge.com/Nonlinear-Evolution-Equations/Zheng/p/book/9781584884521.  Google Scholar

[1]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021052

[2]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[3]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[4]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[5]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[6]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[7]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[8]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[9]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[10]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[11]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[12]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[13]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[14]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[15]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[16]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[17]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[18]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[19]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[20]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

2020 Impact Factor: 1.916

Article outline

[Back to Top]