doi: 10.3934/cpaa.2021142
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability of current density impedance imaging II

900 University Avenue, Riverside, CA 92521, USA

* Corresponding author

Received  January 2021 Revised  June 2021 Early access August 2021

This paper is a continuation of the authors earlier work on stability of Current Density Impedance Imaging (CDII) [R. Lopez, A. Moradifam, Stability of Current Density Impedance Imaging, SIAM J. Math. Anal. (2020).] We show that CDII is stable with respect to errors in both measurement of the magnitude of the current density vector field in the interior and the measurement of the voltage potential on the boundary. This completes the authors study of the stability of Current Density Independence Imaging which was previously shown only by numerical simulations.

Citation: Amir Moradifam, Robert Lopez. Stability of current density impedance imaging II. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021142
References:
[1]

Giovanni Alberti, A Lusin type theorem for gradients, J. Funct. Anal., 100 (1991), 110-118.  doi: 10.1016/0022-1236(91)90104-D.  Google Scholar

[2]

Gabriele Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), 293-318.  doi: 10.1007/BF01781073.  Google Scholar

[3]

L. Borcea, Electrical impedance tomography, Inverse Probl., 18 (2002), R99-R136. doi: 10.1088/0266-5611/18/6/201.  Google Scholar

[4]

M. Cheney and D. Isaacso, An overview of inversion algorithms for impedance imaging, Contemp. Math., 122 (1991), 29-39.  doi: 10.1090/conm/122/1135853.  Google Scholar

[5]

M. CheneyD. Isaacson and and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.  Google Scholar

[6]

M. Dos Santos, Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions, Confluentes Math., 9 (2017), 65-93.  doi: 10.5802/cml.36.  Google Scholar

[7]

W. GórnyP. Rybka and A. Sabra, Special cases of the planar least gradient problem, Nonlinear Anal., 151 (2017), 66-95.  doi: 10.1016/j.na.2016.11.020.  Google Scholar

[8]

A. GreenleafY. KurylevM. Lassas and G. Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc., 46 (2009), 55-97.  doi: 10.1090/S0273-0979-08-01232-9.  Google Scholar

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Boston, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[10]

N. HoellA. Moradifam and A. Nachman, Current density impedance imaging of an anisotropic conductivity in a known conformal class, SIAM J. Math. Anal., 46 (2014), 1820-1842.  doi: 10.1137/130911524.  Google Scholar

[11]

D. Isaacson and M. Cheney, Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms,, SIAM J. Appl. Math., 51 (1991), 1705-1731.  doi: 10.1137/0151087.  Google Scholar

[12]

R. L. JerrardA. Moradifam and A. I. Nachman., Existence and uniqueness of minimizers of general least gradient problems, J. Reine Angew. Math., 734 (2018), 71-97.  doi: 10.1515/crelle-2014-0151.  Google Scholar

[13]

M. L. JoyG. C. Scott and M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magn. Reson. Imaging, 7 (1989), 89-94.   Google Scholar

[14]

M. J. Joy, A. I. Nachman, K. F. Hasanov, R. S. Yoon and A. W. Ma, A New Approach to Current Density Impedance Imaging, Kyoto, Japan, 2004. Google Scholar

[15]

R. Lopez and A. Moradifam, Stability of current density impedance imaging, SIAM J. Math. Anal., 52 (2020), 4506-4523.  doi: 10.1137/19M126520X.  Google Scholar

[16]

N. Mandache, Exponential instability in an inverse problem for the Schrodinger equation, Inverse Probl., 17 (2001), 1435-1444.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[17]

C. Montalto and A. Tamasan, Stability in conductivity imaging from partial measurements of one interior current, Inverse Probl. Imag., 11 (2017), 339-353.  doi: 10.3934/ipi.2017016.  Google Scholar

[18]

C. Montalto and P. Stefanov, Stability of coupled-physics inverse problems with one internal measurement, Inverse Probl., 29 (2013), 125004, 13 pp. doi: 10.1088/0266-5611/29/12/125004.  Google Scholar

[19]

A. Moradifam, Least gradient problems with Neumann boundary condition, J. Differ. Equ., 263 (2017), 7900-7918.  doi: 10.1016/j.jde.2017.08.031.  Google Scholar

[20]

A. Moradifam, Existence and structure of minimizers of least gradient problems, Indiana Uni. Math J., 67 (2018), 1025-1037.  doi: 10.1512/iumj.2018.67.7360.  Google Scholar

[21]

A. MoradifamA. Nachman and A. Tamasan, Conductivity imaging from one interior measurement in the presence of perfectly conducting and insulating inclusions, SIAM J. Math. Anal., 44 (2012), 3969-3990.  doi: 10.1137/120866701.  Google Scholar

[22]

A. Moradifam, A. Nachman and A. Timonov, A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data, Inverse Probl., 28 (2012), 084003, 23pp. doi: 10.1088/0266-5611/28/8/084003.  Google Scholar

[23]

A. Moradifam, A. Nachman and A. Tamasan, Uniqueness of minimizers of weighted least gradient problems arising in hybrid inverse problems, Calc. Var. Partial Differ. Equ., 57 (2018), 14 pp. doi: 10.1007/s00526-017-1274-x.  Google Scholar

[24]

M. W. Hirsch, Differential Topology, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[25]

A. NachmanA. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Probl., 23 (2007), 2551-2563.  doi: 10.1088/0266-5611/23/6/017.  Google Scholar

[26]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Probl., 25 (2009), 035014, 16pp. doi: 10.1088/0266-5611/25/3/035014.  Google Scholar

[27]

A. NachmanA. Tamasan and A. Timonov, Reconstruction of Planar Conductivities in Subdomains from Incomplete Data, SIAM J. Appl. Math., 70 (2010), 3342-3362.  doi: 10.1137/10079241X.  Google Scholar

[28]

A. Nachman, A. Tamasan and A. Timonov, Current density impedance imaging, in Tomography and Inverse Transport Theory, Contemp. Math., Amer. Math. Soc., Providence, RI, 2011. doi: 10.1090/conm/559/11076.  Google Scholar

[29]

M. Z. Nashed and A. Tamasan, Structural stability in a minimization problem and applications to conductivity imaging, Inverse Probl. Imag., 5 (2011), 219-236.  doi: 10.3934/ipi.2011.5.219.  Google Scholar

[30]

G. S. Spradlin and A. Tamasan, Not all traces on the circle come from functions of least gradient in the disk, Indiana Univ. Math. J., 63 (2014), 1819-1837.  doi: 10.1512/iumj.2014.63.5421.  Google Scholar

show all references

References:
[1]

Giovanni Alberti, A Lusin type theorem for gradients, J. Funct. Anal., 100 (1991), 110-118.  doi: 10.1016/0022-1236(91)90104-D.  Google Scholar

[2]

Gabriele Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), 293-318.  doi: 10.1007/BF01781073.  Google Scholar

[3]

L. Borcea, Electrical impedance tomography, Inverse Probl., 18 (2002), R99-R136. doi: 10.1088/0266-5611/18/6/201.  Google Scholar

[4]

M. Cheney and D. Isaacso, An overview of inversion algorithms for impedance imaging, Contemp. Math., 122 (1991), 29-39.  doi: 10.1090/conm/122/1135853.  Google Scholar

[5]

M. CheneyD. Isaacson and and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.  Google Scholar

[6]

M. Dos Santos, Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions, Confluentes Math., 9 (2017), 65-93.  doi: 10.5802/cml.36.  Google Scholar

[7]

W. GórnyP. Rybka and A. Sabra, Special cases of the planar least gradient problem, Nonlinear Anal., 151 (2017), 66-95.  doi: 10.1016/j.na.2016.11.020.  Google Scholar

[8]

A. GreenleafY. KurylevM. Lassas and G. Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc., 46 (2009), 55-97.  doi: 10.1090/S0273-0979-08-01232-9.  Google Scholar

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Boston, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[10]

N. HoellA. Moradifam and A. Nachman, Current density impedance imaging of an anisotropic conductivity in a known conformal class, SIAM J. Math. Anal., 46 (2014), 1820-1842.  doi: 10.1137/130911524.  Google Scholar

[11]

D. Isaacson and M. Cheney, Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms,, SIAM J. Appl. Math., 51 (1991), 1705-1731.  doi: 10.1137/0151087.  Google Scholar

[12]

R. L. JerrardA. Moradifam and A. I. Nachman., Existence and uniqueness of minimizers of general least gradient problems, J. Reine Angew. Math., 734 (2018), 71-97.  doi: 10.1515/crelle-2014-0151.  Google Scholar

[13]

M. L. JoyG. C. Scott and M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magn. Reson. Imaging, 7 (1989), 89-94.   Google Scholar

[14]

M. J. Joy, A. I. Nachman, K. F. Hasanov, R. S. Yoon and A. W. Ma, A New Approach to Current Density Impedance Imaging, Kyoto, Japan, 2004. Google Scholar

[15]

R. Lopez and A. Moradifam, Stability of current density impedance imaging, SIAM J. Math. Anal., 52 (2020), 4506-4523.  doi: 10.1137/19M126520X.  Google Scholar

[16]

N. Mandache, Exponential instability in an inverse problem for the Schrodinger equation, Inverse Probl., 17 (2001), 1435-1444.  doi: 10.1088/0266-5611/17/5/313.  Google Scholar

[17]

C. Montalto and A. Tamasan, Stability in conductivity imaging from partial measurements of one interior current, Inverse Probl. Imag., 11 (2017), 339-353.  doi: 10.3934/ipi.2017016.  Google Scholar

[18]

C. Montalto and P. Stefanov, Stability of coupled-physics inverse problems with one internal measurement, Inverse Probl., 29 (2013), 125004, 13 pp. doi: 10.1088/0266-5611/29/12/125004.  Google Scholar

[19]

A. Moradifam, Least gradient problems with Neumann boundary condition, J. Differ. Equ., 263 (2017), 7900-7918.  doi: 10.1016/j.jde.2017.08.031.  Google Scholar

[20]

A. Moradifam, Existence and structure of minimizers of least gradient problems, Indiana Uni. Math J., 67 (2018), 1025-1037.  doi: 10.1512/iumj.2018.67.7360.  Google Scholar

[21]

A. MoradifamA. Nachman and A. Tamasan, Conductivity imaging from one interior measurement in the presence of perfectly conducting and insulating inclusions, SIAM J. Math. Anal., 44 (2012), 3969-3990.  doi: 10.1137/120866701.  Google Scholar

[22]

A. Moradifam, A. Nachman and A. Timonov, A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data, Inverse Probl., 28 (2012), 084003, 23pp. doi: 10.1088/0266-5611/28/8/084003.  Google Scholar

[23]

A. Moradifam, A. Nachman and A. Tamasan, Uniqueness of minimizers of weighted least gradient problems arising in hybrid inverse problems, Calc. Var. Partial Differ. Equ., 57 (2018), 14 pp. doi: 10.1007/s00526-017-1274-x.  Google Scholar

[24]

M. W. Hirsch, Differential Topology, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[25]

A. NachmanA. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Probl., 23 (2007), 2551-2563.  doi: 10.1088/0266-5611/23/6/017.  Google Scholar

[26]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Probl., 25 (2009), 035014, 16pp. doi: 10.1088/0266-5611/25/3/035014.  Google Scholar

[27]

A. NachmanA. Tamasan and A. Timonov, Reconstruction of Planar Conductivities in Subdomains from Incomplete Data, SIAM J. Appl. Math., 70 (2010), 3342-3362.  doi: 10.1137/10079241X.  Google Scholar

[28]

A. Nachman, A. Tamasan and A. Timonov, Current density impedance imaging, in Tomography and Inverse Transport Theory, Contemp. Math., Amer. Math. Soc., Providence, RI, 2011. doi: 10.1090/conm/559/11076.  Google Scholar

[29]

M. Z. Nashed and A. Tamasan, Structural stability in a minimization problem and applications to conductivity imaging, Inverse Probl. Imag., 5 (2011), 219-236.  doi: 10.3934/ipi.2011.5.219.  Google Scholar

[30]

G. S. Spradlin and A. Tamasan, Not all traces on the circle come from functions of least gradient in the disk, Indiana Univ. Math. J., 63 (2014), 1819-1837.  doi: 10.1512/iumj.2014.63.5421.  Google Scholar

[1]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[2]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[3]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[4]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[5]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[6]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[7]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[8]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[9]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[10]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[11]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[12]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[13]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[14]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[15]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[18]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[19]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[20]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (30)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]