doi: 10.3934/cpaa.2021144
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Extremal solution and Liouville theorem for anisotropic elliptic equations

School of Mathematics, Hunan University, Changsha 410082, China

Received  February 2021 Revised  July 2021 Early access August 2021

We study the quasilinear Dirichlet boundary problem
$ \begin{equation} \nonumber \begin{cases} -Qu = \lambda e^{u}, \text{in}~~ \Omega, \\ u = 0, \qquad \;~~\text{on}~~~~ \partial\Omega, \end{cases} \end{equation} $
where
$ \lambda>0 $
is a parameter,
$ \Omega\subset\mathbb{R}^{N} $
(
$ N\geq2 $
) is a bounded domain, and the operator
$ Q $
, known as Finsler-Laplacian or anisotropic Laplacian, is defined by
$ Qu: = \sum\limits_{i = 1}^{N}\frac{\partial}{\partial x_{i}}(F(\nabla u)F_{\xi_{i}}(\nabla u)). $
Here,
$ F_{\xi_{i}} = \frac{\partial F}{\partial\xi_{i}}(\xi) $
and
$ F: \mathbb{R}^{N}\rightarrow [0, +\infty) $
is a convex function of
$ C^{2}(\mathbb{R}^{N}\setminus\{0\}) $
, and satisfies certain assumptions. We derive the existence of extremal solution and obtain that it is regular, if
$ N\leq9 $
.
We also concern the Hénon type anisotropic Liouville equation,
$ -Qu = (F^{0}(x))^{\alpha}e^{u} ~~\text{in} ~~\mathbb{R}^{N}, $
where
$ \alpha>-2 $
,
$ N\geq2 $
and
$ F^{0} $
is the support function of
$ K: = \{x\in\mathbb{R}^{N}:F(x)<1\} $
. We obtain the Liouville theorem for stable solutions and finite Morse index solutions for
$ 2\leq N<10+4\alpha $
and
$ 3\leq N<10+4\alpha^{-} $
respectively, where
$ \alpha^{-} = \min\{\alpha, 0\} $
.
Citation: Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure &amp; Applied Analysis, doi: 10.3934/cpaa.2021144
References:
[1]

F. Almgren and J. E. Taylor, Flat flow is motion by cristalline curvature for curves with cnstalline energies, J. Differ. Geom., 42 (1995), 1-22.   Google Scholar

[2]

F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-437.  doi: 10.1137/0331020.  Google Scholar

[3]

A. AlvinoV. FeroneG. Trombetti and P. L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 14 (1997), 275-293.  doi: 10.1016/S0294-1449(97)80147-3.  Google Scholar

[4]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[5]

W. W. Ao and W. Yang, On the classification of solutions of cosmic strings equation, Ann. Mat. Pura Appl., 198 (2019), 2183-2193.  doi: 10.1007/s10231-019-00861-w.  Google Scholar

[6]

M. BelloniV. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963.  doi: 10.1002/cpa.3160440808.  Google Scholar

[8]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[9]

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.  doi: 10.1007/s00208-009-0386-9.  Google Scholar

[10]

M. CozziA. Farina and E. Valdinoci, Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs, Adv. Math., 293 (2016), 343-381.  doi: 10.1016/j.aim.2016.02.014.  Google Scholar

[11]

M. CozziA. Farina and E. Valdinoci, Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations, Comm. Math. Phys., 331 (2014), 189-214.  doi: 10.1007/s00220-014-2107-9.  Google Scholar

[12]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problem, Arch. Rational Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.  Google Scholar

[13]

E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$: stability outside a compact set and applications, Proc. Amer. Math. Soc, 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.  Google Scholar

[14]

F. Della Pietra and N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., 287 (2014), 194-209.  doi: 10.1002/mana.201200296.  Google Scholar

[15]

A. Farina, Stable solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.  Google Scholar

[16]

A. Farina and E. Valdinoci, Gradient bounds for anisotropic partial differential equations, Calc. Var. Partial Differ. Equ., 49 (2014), 923-936.  doi: 10.1007/s00526-013-0605-9.  Google Scholar

[17]

M. Fazly and Y. Li, Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations, Discrete Contin. Dyn. Syst., 41 (2021), 4185-4206.  doi: 10.3934/dcds.2021033.  Google Scholar

[18]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[19]

G. M. Figueiredo and J. R. Silva, Solutions to an anisotropic system via subsupersolution method and Mountain Pass Theorem, Electronic Journal Quality Theory in Differential Equations, 46 (2019), 1-13.  doi: 10.14232/ejqtde.2019.1.46.  Google Scholar

[20]

I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 125-136.  doi: 10.1017/S0308210500028365.  Google Scholar

[21]

J. Garcia Azorero and I. Peral Alonso, On an Emden-Fowler type equation, Nonlinear Anal., 18 (1992), 1085-1097.  doi: 10.1016/0362-546X(92)90197-M.  Google Scholar

[22]

J. Garcia AzoreroI. Peral Alonso and J. P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal., 22 (1994), 481-498.  doi: 10.1016/0362-546X(94)90169-4.  Google Scholar

[23]

P. Le, Low dimensional instability for quasilinear problems of weighted exponential nonlinearity, Math. Nachr., 291 (2018), 2288-2297.  doi: 10.1002/mana.201700260.  Google Scholar

[24]

F. Mignot and J. P. Puel, Sur une class de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differ. Equ., 5 (1980), 791-836.  doi: 10.1080/03605308008820155.  Google Scholar

[25]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[26]

J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302.  doi: 10.1007/BF02391014.  Google Scholar

[27]

J. Serrin, On the strong maximum principle for quasilinear second order differential inequalities, J. Funct. Anal., 5 (1970), 184-193.  doi: 10.1016/0022-1236(70)90024-8.  Google Scholar

[28]

G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire Jean Leray, 3 (1963-1964), 1-77.   Google Scholar

[29]

C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, . Funct. Anal., 262 (2012), 1705-1727.  doi: 10.1016/j.jfa.2011.11.017.  Google Scholar

[30]

G. F. Wang and C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.  doi: 10.1007/s00205-010-0323-9.  Google Scholar

[31]

G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equ., 252 (2012), 1668-1700.  doi: 10.1016/j.jde.2011.08.001.  Google Scholar

[32]

G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflung der Kristallflhen, Z. Krist, 34 (1901), 44930. Google Scholar

show all references

References:
[1]

F. Almgren and J. E. Taylor, Flat flow is motion by cristalline curvature for curves with cnstalline energies, J. Differ. Geom., 42 (1995), 1-22.   Google Scholar

[2]

F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-437.  doi: 10.1137/0331020.  Google Scholar

[3]

A. AlvinoV. FeroneG. Trombetti and P. L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 14 (1997), 275-293.  doi: 10.1016/S0294-1449(97)80147-3.  Google Scholar

[4]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[5]

W. W. Ao and W. Yang, On the classification of solutions of cosmic strings equation, Ann. Mat. Pura Appl., 198 (2019), 2183-2193.  doi: 10.1007/s10231-019-00861-w.  Google Scholar

[6]

M. BelloniV. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963.  doi: 10.1002/cpa.3160440808.  Google Scholar

[8]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[9]

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.  doi: 10.1007/s00208-009-0386-9.  Google Scholar

[10]

M. CozziA. Farina and E. Valdinoci, Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs, Adv. Math., 293 (2016), 343-381.  doi: 10.1016/j.aim.2016.02.014.  Google Scholar

[11]

M. CozziA. Farina and E. Valdinoci, Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations, Comm. Math. Phys., 331 (2014), 189-214.  doi: 10.1007/s00220-014-2107-9.  Google Scholar

[12]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problem, Arch. Rational Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.  Google Scholar

[13]

E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$: stability outside a compact set and applications, Proc. Amer. Math. Soc, 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.  Google Scholar

[14]

F. Della Pietra and N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., 287 (2014), 194-209.  doi: 10.1002/mana.201200296.  Google Scholar

[15]

A. Farina, Stable solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.  Google Scholar

[16]

A. Farina and E. Valdinoci, Gradient bounds for anisotropic partial differential equations, Calc. Var. Partial Differ. Equ., 49 (2014), 923-936.  doi: 10.1007/s00526-013-0605-9.  Google Scholar

[17]

M. Fazly and Y. Li, Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations, Discrete Contin. Dyn. Syst., 41 (2021), 4185-4206.  doi: 10.3934/dcds.2021033.  Google Scholar

[18]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.  doi: 10.1090/S0002-9939-08-09554-3.  Google Scholar

[19]

G. M. Figueiredo and J. R. Silva, Solutions to an anisotropic system via subsupersolution method and Mountain Pass Theorem, Electronic Journal Quality Theory in Differential Equations, 46 (2019), 1-13.  doi: 10.14232/ejqtde.2019.1.46.  Google Scholar

[20]

I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 125-136.  doi: 10.1017/S0308210500028365.  Google Scholar

[21]

J. Garcia Azorero and I. Peral Alonso, On an Emden-Fowler type equation, Nonlinear Anal., 18 (1992), 1085-1097.  doi: 10.1016/0362-546X(92)90197-M.  Google Scholar

[22]

J. Garcia AzoreroI. Peral Alonso and J. P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal., 22 (1994), 481-498.  doi: 10.1016/0362-546X(94)90169-4.  Google Scholar

[23]

P. Le, Low dimensional instability for quasilinear problems of weighted exponential nonlinearity, Math. Nachr., 291 (2018), 2288-2297.  doi: 10.1002/mana.201700260.  Google Scholar

[24]

F. Mignot and J. P. Puel, Sur une class de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differ. Equ., 5 (1980), 791-836.  doi: 10.1080/03605308008820155.  Google Scholar

[25]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[26]

J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302.  doi: 10.1007/BF02391014.  Google Scholar

[27]

J. Serrin, On the strong maximum principle for quasilinear second order differential inequalities, J. Funct. Anal., 5 (1970), 184-193.  doi: 10.1016/0022-1236(70)90024-8.  Google Scholar

[28]

G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire Jean Leray, 3 (1963-1964), 1-77.   Google Scholar

[29]

C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, . Funct. Anal., 262 (2012), 1705-1727.  doi: 10.1016/j.jfa.2011.11.017.  Google Scholar

[30]

G. F. Wang and C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.  doi: 10.1007/s00205-010-0323-9.  Google Scholar

[31]

G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equ., 252 (2012), 1668-1700.  doi: 10.1016/j.jde.2011.08.001.  Google Scholar

[32]

G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflung der Kristallflhen, Z. Krist, 34 (1901), 44930. Google Scholar

[1]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure &amp; Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[2]

Kelei Wang. Recent progress on stable and finite Morse index solutions of semilinear elliptic equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021062

[3]

Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure &amp; Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709

[4]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[5]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[6]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[7]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[8]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure &amp; Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[9]

Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497

[10]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[11]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[12]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[13]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[14]

Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021047

[15]

Belgacem Rahal, Cherif Zaidi. On finite Morse index solutions of higher order fractional elliptic equations. Evolution Equations & Control Theory, 2021, 10 (3) : 575-597. doi: 10.3934/eect.2020081

[16]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure &amp; Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[17]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

[18]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[19]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[20]

Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (22)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]