December  2021, 20(12): 4107-4126. doi: 10.3934/cpaa.2021147

Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs

Department of Mathematics, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan

Received  February 2021 Revised  July 2021 Published  December 2021 Early access  September 2021

Fund Project: The author was supported by JSPS KAKENHI Grant Numbers 18K03356, 18K03362

We consider positive solutions of semi-linear elliptic equations
$ - \epsilon^2 u'' +u = u^p $
on compact metric graphs, where
$ p \in (1,\infty) $
is a given constant and
$ \epsilon $
is a positive parameter. We focus on the multiplicity of positive solutions for sufficiently small
$ \epsilon $
. For each edge of the graph, we construct a positive solution which concentrates some point on the edge if
$ \epsilon $
is sufficiently small. Moreover, we give the existence result of solutions which concentrate inner vertices of the graph.
Citation: Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147
References:
[1]

S. Akduman and A. Pankov, Nonlinear Schrödinger equation with growing potential on infinite metric graphs, Nonlinear Anal., 184 (2019), 258-272.  doi: 10.1016/j.na.2019.02.020.  Google Scholar

[2]

R. AdamiE. Serra and P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differ. Equ., 54 (2015), 743-761.  doi: 10.1007/s00526-014-0804-z.  Google Scholar

[3]

R. Adami, E. Serra and P. Tilli, Multiple positive bound states for the subcritical NLS equation on metric graphs, Calc. Var. Partial Differ. Equ., 58 (2019), 16 pp. doi: 10.1007/s00526-018-1461-4.  Google Scholar

[4]

A. Bahri and Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in ${\bf R}^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15.  doi: 10.4171/RMI/92.  Google Scholar

[5]

C. CacciapuotiS. Dovetta and E. Serra, Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., 86 (2018), 305-327.  doi: 10.1007/s00032-018-0288-y.  Google Scholar

[6]

M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.  doi: 10.1007/s002080200327.  Google Scholar

[7]

S. DovettaM. GhimentiA. M. Micheletti and A. Pistoia, Peaked and low action solutions of NLS equations on graphs with terminal edges, SIAM J. Math. Anal., 52 (2020), 2874-2894.  doi: 10.1137/19M127447X.  Google Scholar

[8]

S. Dovetta, E. Serra and P. Tilli, Uniqueness and non-uniqueness of prescribed mass NLS ground states on metric graphs, Adv. Math., 374 (2020), 107352, 41 pp. doi: 10.1016/j.aim.2020.107352.  Google Scholar

[9]

S. DovettaE. Serra and P. Tilli, NLS ground states on metric trees: existence results and open questions, J. Lond. Math. Soc., 102 (2020), 1223-1240.  doi: 10.1112/jlms.12361.  Google Scholar

[10]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in ${\bf R}^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[11]

K. Kurata and M. Shibata, Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020), 124297, 22 pp. doi: 10.1016/j.jmaa.2020.124297.  Google Scholar

[12]

Y. LiF. Li and J. Shi, Ground states of nonlinear Schrödinger equation on star metric graphs, J. Math. Anal. Appl., 459 (2018), 661-685.  doi: 10.1016/j.jmaa.2017.10.069.  Google Scholar

show all references

References:
[1]

S. Akduman and A. Pankov, Nonlinear Schrödinger equation with growing potential on infinite metric graphs, Nonlinear Anal., 184 (2019), 258-272.  doi: 10.1016/j.na.2019.02.020.  Google Scholar

[2]

R. AdamiE. Serra and P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differ. Equ., 54 (2015), 743-761.  doi: 10.1007/s00526-014-0804-z.  Google Scholar

[3]

R. Adami, E. Serra and P. Tilli, Multiple positive bound states for the subcritical NLS equation on metric graphs, Calc. Var. Partial Differ. Equ., 58 (2019), 16 pp. doi: 10.1007/s00526-018-1461-4.  Google Scholar

[4]

A. Bahri and Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in ${\bf R}^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15.  doi: 10.4171/RMI/92.  Google Scholar

[5]

C. CacciapuotiS. Dovetta and E. Serra, Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., 86 (2018), 305-327.  doi: 10.1007/s00032-018-0288-y.  Google Scholar

[6]

M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.  doi: 10.1007/s002080200327.  Google Scholar

[7]

S. DovettaM. GhimentiA. M. Micheletti and A. Pistoia, Peaked and low action solutions of NLS equations on graphs with terminal edges, SIAM J. Math. Anal., 52 (2020), 2874-2894.  doi: 10.1137/19M127447X.  Google Scholar

[8]

S. Dovetta, E. Serra and P. Tilli, Uniqueness and non-uniqueness of prescribed mass NLS ground states on metric graphs, Adv. Math., 374 (2020), 107352, 41 pp. doi: 10.1016/j.aim.2020.107352.  Google Scholar

[9]

S. DovettaE. Serra and P. Tilli, NLS ground states on metric trees: existence results and open questions, J. Lond. Math. Soc., 102 (2020), 1223-1240.  doi: 10.1112/jlms.12361.  Google Scholar

[10]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in ${\bf R}^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[11]

K. Kurata and M. Shibata, Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020), 124297, 22 pp. doi: 10.1016/j.jmaa.2020.124297.  Google Scholar

[12]

Y. LiF. Li and J. Shi, Ground states of nonlinear Schrödinger equation on star metric graphs, J. Math. Anal. Appl., 459 (2018), 661-685.  doi: 10.1016/j.jmaa.2017.10.069.  Google Scholar

[1]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[2]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[3]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[4]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[5]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029

[6]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[7]

Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093

[8]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[9]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[10]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[11]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[12]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4593-4608. doi: 10.3934/dcds.2021050

[13]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[14]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[15]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[16]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[17]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[18]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[19]

Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112

[20]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (154)
  • HTML views (157)
  • Cited by (0)

Other articles
by authors

[Back to Top]