Advanced Search
Article Contents
Article Contents

Classification of positive radial solutions to a weighted biharmonic equation

The author is partially supported by NSFC (No. 11431005)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the weighted fourth order equation

    $ \Delta(|x|^{-\alpha}\Delta u)+\lambda \text{div}(|x|^{-\alpha-2}\nabla u)+\mu|x|^{-\alpha-4}u = |x|^\beta u^p\quad \text{in} \quad \mathbb{R}^n \backslash \{0\}, $

    where $ n\geq 5 $, $ -n<\alpha<n-4 $, $ p>1 $ and $ (p,\alpha,\beta,n) $ belongs to the critical hyperbola

    $ \frac{n+\alpha}{2}+\frac{n+\beta}{p+1} = n-2. $

    We prove the existence of radial solutions to the equation for some $ \lambda $ and $ \mu $. On the other hand, let $ v(t): = |x|^{\frac{n-4-\alpha}{2}}u(|x|) $, $ t = -\ln |x| $, then for the radial solution $ u $ with non-removable singularity at origin, $ v(t) $ is a periodic function if $ \alpha \in (-2,n-4) $ and $ \lambda $, $ \mu $ satisfy some conditions; while for $ \alpha \in (-n,-2] $, there exists a radial solution with non-removable singularity and the corresponding function $ v(t) $ is not periodic. We also get some results about the best constant and symmetry breaking, which is closely related to the Caffarelli-Kohn-Nirenberg type inequality.

    Mathematics Subject Classification: Primary: 35B09, 35B07; Secondary: 35B10, 35J30, 35J75.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 3836-3848.  doi: 10.1016/j.na.2012.02.005.
    [2] P. Caldiroli and G. Cora, Entire solutions for a class of fourth-order semilinear elliptic equations with weights, Mediterr. J. Math., 13 (2016), 657-675.  doi: 10.1007/s00009-015-0519-1.
    [3] P. Caldiroli and R. Musina, On Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687.  doi: 10.1007/s00032-011-0167-2.
    [4] P. Caldiroli and R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differ. Equ., 45 (2012), 147-164.  doi: 10.1007/s00526-011-0454-3.
    [5] R. Frank and T. König, Classification of positive solutions to a nonlinear biharmonic equation with critical exponent, Anal. Partial Differ. Equ., 12 (2019), 1101-1113.  doi: 10.2140/apde.2019.12.1101.
    [6] R. Frank and T. König, Singular solution to a semilinear biharmonic equation with a general critical nonlinearity, Rend. Lincei Mat. Appl., 30 (2019), 817-846.  doi: 10.4171/RLM/871.
    [7] Z. M. GuoX. HuangL. P. Wang and J. C. Wei, On Delaunay solutions of a biharmonic elliptic equation with critical exponent, J. Anal. Math., 140 (2020), 371-394.  doi: 10.1007/s11854-020-0096-5.
    [8] Z. M. Guo, F. S. Wan and L. P. Wang, Embeddings of weighted Sobolev spaces and a weighted fourth-order elliptic equation, Commun. Contemp. Math., 22 (2020), 1950057, 40 pp. doi: 10.1142/S0219199719500573.
    [9] X. Huang and L. P. Wang, Classification to the positive radial solutions with weighted biharmonic equation, Discrete Contin. Dyn. Syst., 40 (2020), 4821-4837.  doi: 10.3934/dcds.2020203.
    [10] X. Huang and D. Ye, Hardy-Rellich type equalities, preprint.
    [11] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^N$, Comment. Math. Helv., 73 (1998), 206-231.  doi: 10.1007/s000140050052.
    [12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145.
    [13] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.
    [14] R. Musina, Weighted Sobolev spaces of radially symmetric functions, Ann. Mat. Pura Appl., 193 (2014), 1626-1659.  doi: 10.1007/s10231-013-0348-4.
  • 加载中

Article Metrics

HTML views(360) PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint