-
Previous Article
Nondegeneracy of solutions for a class of cooperative systems on $ \mathbb{R}^n $
- CPAA Home
- This Issue
-
Next Article
Classification of positive radial solutions to a weighted biharmonic equation
The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
In this paper, we consider the global existence of the Cauchy problem for a version of one velocity Baer-Nunziato model with dissipation for the mixture of two compressible fluids in $ \mathbb{R}^3 $. We get the existence theory of global strong solutions by using the decaying properties of the solutions. The energy method combined with the low-high-frequency decomposition is used to derive such properties and hence the global existence. As a byproduct, the optimal time decay estimates of all-order spatial derivatives of the pressure and the velocity are obtained.
References:
[1] |
J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila and D. S. Stewart,
Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues, Phys. Fluids, 11 (1999), 378-402.
doi: 10.1063/1.869887. |
[2] |
M. R. Baer and J. W. Nunziato,
A two-phase mixture theory for the deflagration-todetonation transition (ddt) in reactive granular materials, Int. J. Muhiphase Flow, 12 (1986), 861-889.
doi: 10.1016/0301-9322(86)90033-9. |
[3] |
D. Drew and S. L. Passman, Theory of Multicomponent Fluids. Applied Mathematical Sciences, Springer, New York, 1999. |
[4] |
S. Evje and T. Flåtten,
Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.
|
[5] |
S. Evje and K. H. Karlsen,
Global existence of weak solutions for a viscous two-phase model, J. Differ. Equ., 245 (2008), 2660-2703.
doi: 10.1016/j.jde.2007.10.032. |
[6] |
S. Evje, W. J. Wang and H. Y. Wen,
Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Ration. Mech. Anal., 221 (2016), 1285-1316.
doi: 10.1007/s00205-016-0984-0. |
[7] |
V. Guillemaud, Mod${ \acute{e}}$lisation et Simulation Num${ \acute{e}}$rique des ${ \acute{e}}$coulements Diphasiques par une Approche Bifuide ${ \grave{a}}$ Deux Pressions, Ph.D thesis, Université de Provence-Aix-Marseille I, 2007. |
[8] |
C. C. Hao and H. L. Li,
Well-posedness for a multi-dimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.
doi: 10.1137/110851602. |
[9] |
M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York, 2006. |
[10] |
B. J. Jin and A. Novotný,
Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible fluids, J. Differ. Equ., 268 (2019), 204-238.
doi: 10.1016/j.jde.2019.08.025. |
[11] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magne-tohydrodynamics, Ph.D thesis, Kyoto University, 1983. |
[12] |
T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$, Commun. Math. Phys., 200 (1999), 621–659.
doi: 10.1007/s002200050543. |
[13] |
A. Novotný,
Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids, Sci. China Math., 63 (2020), 2399-2414.
doi: 10.1007/s11425-019-9552-1. |
[14] |
A. Novotný and M. Pokorny,
Weak solutions for some compressible multicomponent fluid models, Arch. Ration. Mech. Anal., 235 (2020), 355-403.
doi: 10.1007/s00205-019-01424-2. |
[15] |
J. M. Powers, D. S. Stewart and H. Krier,
Theory of two-phase detonation - part I: Modeling, Combust. Flame, 80 (1990), 264-279.
doi: 10.1016/0010-2180(90)90104-Y. |
[16] |
A. Vasseur, H. Y. Wen and C. Yu,
Global weak solution to the viscous two-fluid model with finite energy, J. Math. Pures Appl., 125 (2019), 247-282.
doi: 10.1016/j.matpur.2018.06.019. |
[17] |
H. Y. Wen and L. M. Zhu,
Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, J. Differ. Equ., 264 (2018), 2377-2406.
doi: 10.1016/j.jde.2017.10.027. |
[18] |
L. Yao and C. J. Zhu,
Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.
doi: 10.1007/s00208-010-0544-0. |
[19] |
Y. H. Zhang and C. J. Zhu,
Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differ. Equ., 258 (2015), 2315-2338.
doi: 10.1016/j.jde.2014.12.008. |
show all references
References:
[1] |
J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila and D. S. Stewart,
Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues, Phys. Fluids, 11 (1999), 378-402.
doi: 10.1063/1.869887. |
[2] |
M. R. Baer and J. W. Nunziato,
A two-phase mixture theory for the deflagration-todetonation transition (ddt) in reactive granular materials, Int. J. Muhiphase Flow, 12 (1986), 861-889.
doi: 10.1016/0301-9322(86)90033-9. |
[3] |
D. Drew and S. L. Passman, Theory of Multicomponent Fluids. Applied Mathematical Sciences, Springer, New York, 1999. |
[4] |
S. Evje and T. Flåtten,
Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.
|
[5] |
S. Evje and K. H. Karlsen,
Global existence of weak solutions for a viscous two-phase model, J. Differ. Equ., 245 (2008), 2660-2703.
doi: 10.1016/j.jde.2007.10.032. |
[6] |
S. Evje, W. J. Wang and H. Y. Wen,
Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Ration. Mech. Anal., 221 (2016), 1285-1316.
doi: 10.1007/s00205-016-0984-0. |
[7] |
V. Guillemaud, Mod${ \acute{e}}$lisation et Simulation Num${ \acute{e}}$rique des ${ \acute{e}}$coulements Diphasiques par une Approche Bifuide ${ \grave{a}}$ Deux Pressions, Ph.D thesis, Université de Provence-Aix-Marseille I, 2007. |
[8] |
C. C. Hao and H. L. Li,
Well-posedness for a multi-dimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.
doi: 10.1137/110851602. |
[9] |
M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York, 2006. |
[10] |
B. J. Jin and A. Novotný,
Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible fluids, J. Differ. Equ., 268 (2019), 204-238.
doi: 10.1016/j.jde.2019.08.025. |
[11] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magne-tohydrodynamics, Ph.D thesis, Kyoto University, 1983. |
[12] |
T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$, Commun. Math. Phys., 200 (1999), 621–659.
doi: 10.1007/s002200050543. |
[13] |
A. Novotný,
Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids, Sci. China Math., 63 (2020), 2399-2414.
doi: 10.1007/s11425-019-9552-1. |
[14] |
A. Novotný and M. Pokorny,
Weak solutions for some compressible multicomponent fluid models, Arch. Ration. Mech. Anal., 235 (2020), 355-403.
doi: 10.1007/s00205-019-01424-2. |
[15] |
J. M. Powers, D. S. Stewart and H. Krier,
Theory of two-phase detonation - part I: Modeling, Combust. Flame, 80 (1990), 264-279.
doi: 10.1016/0010-2180(90)90104-Y. |
[16] |
A. Vasseur, H. Y. Wen and C. Yu,
Global weak solution to the viscous two-fluid model with finite energy, J. Math. Pures Appl., 125 (2019), 247-282.
doi: 10.1016/j.matpur.2018.06.019. |
[17] |
H. Y. Wen and L. M. Zhu,
Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, J. Differ. Equ., 264 (2018), 2377-2406.
doi: 10.1016/j.jde.2017.10.027. |
[18] |
L. Yao and C. J. Zhu,
Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.
doi: 10.1007/s00208-010-0544-0. |
[19] |
Y. H. Zhang and C. J. Zhu,
Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differ. Equ., 258 (2015), 2315-2338.
doi: 10.1016/j.jde.2014.12.008. |
[1] |
Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104 |
[2] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[3] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[4] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
[5] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[6] |
Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic and Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001 |
[7] |
T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 |
[8] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[9] |
Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981 |
[10] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5141-5164. doi: 10.3934/dcds.2021071 |
[11] |
Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211 |
[12] |
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 |
[13] |
Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146 |
[14] |
Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791 |
[15] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[16] |
Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 |
[17] |
Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016 |
[18] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[19] |
Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117 |
[20] |
Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]