doi: 10.3934/cpaa.2021151
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

* Corresponding author

Received  March 2021 Revised  August 2021 Early access September 2021

Fund Project: The second author is supported by the National Natural Science Foundation of China (Grant Nos. 11871341 and 12071152)

In this paper, we consider the global existence of the Cauchy problem for a version of one velocity Baer-Nunziato model with dissipation for the mixture of two compressible fluids in $ \mathbb{R}^3 $. We get the existence theory of global strong solutions by using the decaying properties of the solutions. The energy method combined with the low-high-frequency decomposition is used to derive such properties and hence the global existence. As a byproduct, the optimal time decay estimates of all-order spatial derivatives of the pressure and the velocity are obtained.

Citation: Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021151
References:
[1]

J. B. BdzilR. MenikoffS. F. SonA. K. Kapila and D. S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues, Phys. Fluids, 11 (1999), 378-402.  doi: 10.1063/1.869887.  Google Scholar

[2]

M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-todetonation transition (ddt) in reactive granular materials, Int. J. Muhiphase Flow, 12 (1986), 861-889.  doi: 10.1016/0301-9322(86)90033-9.  Google Scholar

[3]

D. Drew and S. L. Passman, Theory of Multicomponent Fluids. Applied Mathematical Sciences, Springer, New York, 1999. Google Scholar

[4]

S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.   Google Scholar

[5]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differ. Equ., 245 (2008), 2660-2703.  doi: 10.1016/j.jde.2007.10.032.  Google Scholar

[6]

S. EvjeW. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Ration. Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.  Google Scholar

[7]

V. Guillemaud, Mod${ \acute{e}}$lisation et Simulation Num${ \acute{e}}$rique des ${ \acute{e}}$coulements Diphasiques par une Approche Bifuide ${ \grave{a}}$ Deux Pressions, Ph.D thesis, Université de Provence-Aix-Marseille I, 2007. Google Scholar

[8]

C. C. Hao and H. L. Li, Well-posedness for a multi-dimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.  doi: 10.1137/110851602.  Google Scholar

[9]

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York, 2006. Google Scholar

[10]

B. J. Jin and A. Novotný, Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible fluids, J. Differ. Equ., 268 (2019), 204-238.  doi: 10.1016/j.jde.2019.08.025.  Google Scholar

[11]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magne-tohydrodynamics, Ph.D thesis, Kyoto University, 1983. Google Scholar

[12]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$, Commun. Math. Phys., 200 (1999), 621–659. doi: 10.1007/s002200050543.  Google Scholar

[13]

A. Novotný, Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids, Sci. China Math., 63 (2020), 2399-2414.  doi: 10.1007/s11425-019-9552-1.  Google Scholar

[14]

A. Novotný and M. Pokorny, Weak solutions for some compressible multicomponent fluid models, Arch. Ration. Mech. Anal., 235 (2020), 355-403.  doi: 10.1007/s00205-019-01424-2.  Google Scholar

[15]

J. M. PowersD. S. Stewart and H. Krier, Theory of two-phase detonation - part I: Modeling, Combust. Flame, 80 (1990), 264-279.  doi: 10.1016/0010-2180(90)90104-Y.  Google Scholar

[16]

A. VasseurH. Y. Wen and C. Yu, Global weak solution to the viscous two-fluid model with finite energy, J. Math. Pures Appl., 125 (2019), 247-282.  doi: 10.1016/j.matpur.2018.06.019.  Google Scholar

[17]

H. Y. Wen and L. M. Zhu, Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, J. Differ. Equ., 264 (2018), 2377-2406.  doi: 10.1016/j.jde.2017.10.027.  Google Scholar

[18]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.  doi: 10.1007/s00208-010-0544-0.  Google Scholar

[19]

Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differ. Equ., 258 (2015), 2315-2338.  doi: 10.1016/j.jde.2014.12.008.  Google Scholar

show all references

References:
[1]

J. B. BdzilR. MenikoffS. F. SonA. K. Kapila and D. S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues, Phys. Fluids, 11 (1999), 378-402.  doi: 10.1063/1.869887.  Google Scholar

[2]

M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-todetonation transition (ddt) in reactive granular materials, Int. J. Muhiphase Flow, 12 (1986), 861-889.  doi: 10.1016/0301-9322(86)90033-9.  Google Scholar

[3]

D. Drew and S. L. Passman, Theory of Multicomponent Fluids. Applied Mathematical Sciences, Springer, New York, 1999. Google Scholar

[4]

S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.   Google Scholar

[5]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differ. Equ., 245 (2008), 2660-2703.  doi: 10.1016/j.jde.2007.10.032.  Google Scholar

[6]

S. EvjeW. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Ration. Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.  Google Scholar

[7]

V. Guillemaud, Mod${ \acute{e}}$lisation et Simulation Num${ \acute{e}}$rique des ${ \acute{e}}$coulements Diphasiques par une Approche Bifuide ${ \grave{a}}$ Deux Pressions, Ph.D thesis, Université de Provence-Aix-Marseille I, 2007. Google Scholar

[8]

C. C. Hao and H. L. Li, Well-posedness for a multi-dimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.  doi: 10.1137/110851602.  Google Scholar

[9]

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York, 2006. Google Scholar

[10]

B. J. Jin and A. Novotný, Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible fluids, J. Differ. Equ., 268 (2019), 204-238.  doi: 10.1016/j.jde.2019.08.025.  Google Scholar

[11]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magne-tohydrodynamics, Ph.D thesis, Kyoto University, 1983. Google Scholar

[12]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$, Commun. Math. Phys., 200 (1999), 621–659. doi: 10.1007/s002200050543.  Google Scholar

[13]

A. Novotný, Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids, Sci. China Math., 63 (2020), 2399-2414.  doi: 10.1007/s11425-019-9552-1.  Google Scholar

[14]

A. Novotný and M. Pokorny, Weak solutions for some compressible multicomponent fluid models, Arch. Ration. Mech. Anal., 235 (2020), 355-403.  doi: 10.1007/s00205-019-01424-2.  Google Scholar

[15]

J. M. PowersD. S. Stewart and H. Krier, Theory of two-phase detonation - part I: Modeling, Combust. Flame, 80 (1990), 264-279.  doi: 10.1016/0010-2180(90)90104-Y.  Google Scholar

[16]

A. VasseurH. Y. Wen and C. Yu, Global weak solution to the viscous two-fluid model with finite energy, J. Math. Pures Appl., 125 (2019), 247-282.  doi: 10.1016/j.matpur.2018.06.019.  Google Scholar

[17]

H. Y. Wen and L. M. Zhu, Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field, J. Differ. Equ., 264 (2018), 2377-2406.  doi: 10.1016/j.jde.2017.10.027.  Google Scholar

[18]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.  doi: 10.1007/s00208-010-0544-0.  Google Scholar

[19]

Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differ. Equ., 258 (2015), 2315-2338.  doi: 10.1016/j.jde.2014.12.008.  Google Scholar

[1]

Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104

[2]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[3]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[4]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[5]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[6]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[7]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[8]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[9]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[10]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5141-5164. doi: 10.3934/dcds.2021071

[11]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[12]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[13]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[14]

Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791

[15]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[16]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[17]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[18]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[19]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[20]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (19)
  • HTML views (21)
  • Cited by (0)

Other articles
by authors

[Back to Top]