doi: 10.3934/cpaa.2021152
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Nondegeneracy of solutions for a class of cooperative systems on $ \mathbb{R}^n $

1. 

The City University of New York, CSI, Mathematics Department, Staten Island, New York 10314, USA

2. 

University of Cologne, Dept. of Mathematics & Computer Science, 50931 Cologne, Germany

* Corresponding author

Received  May 2021 Early access September 2021

Fund Project: The first author was supported by the Alexander von Humboldt foundation and by MINECO grant MTM2017-84214-C2-1-P

We consider fully coupled cooperative systems on $ \mathbb{R}^n $ with coefficients that decay exponentially at infinity. Expanding some results obtained previously on bounded domain, we prove that the existence of a strictly positive supersolution ensures the first eigenvalue to exist and to be nonzero. This result is applied to show that the topological solutions for a Chern-Simons model, described by a semilinear system on $ \mathbb{R}^2 $ with exponential nonlinearity, are nondegenerate.

Citation: Marcello Lucia, Guido Sweers. Nondegeneracy of solutions for a class of cooperative systems on $ \mathbb{R}^n $. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021152
References:
[1]

R. A. Adams, Compact imbeddings of weighted Sobolev spaces on unbounded domains, J. Differ. Equ., 9 (1971), 325-334.  doi: 10.1016/0022-0396(71)90085-4.  Google Scholar

[2]

I. BirindelliE. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differ. Equ., 35 (1999), 326-334.   Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[4]

H. Brezis and F. Merle, Uniform estimates and blow up behavior for solutions of $- \Delta u = V(x)e^u$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[5]

K. J. BrownC. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on$\mathbb{R}^{n}$, Proc. Amer. Math. Soc., 109 (1990), 147-155.  doi: 10.2307/2048374.  Google Scholar

[6]

J. Busca and B. Sirakov, Symmetry results for semi-linear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701.  Google Scholar

[7]

L. Cardoulis, Principal eigenvalues for systems of Schrödinger equations defined in the whole space with indefinite weights, Math. Slovaca, 65 (2015), 1079-1094.  doi: 10.1515/ms-2015-0074.  Google Scholar

[8]

K. C. Chang, Principal eigenvalue for weight matrix in elliptic systems, Nonlinear Anal., 46 (2001), 419-433.  doi: 10.1016/S0362-546X(00)00140-1.  Google Scholar

[9]

S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math., 99 (1974), 48-69.  doi: 10.2307/1971013.  Google Scholar

[10]

J. L. ChernZ. Y. Chen and C. S. Lin, Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles, Commun. Math. Phys., 296 (2010), 323-351.  doi: 10.1007/s00220-010-1021-z.  Google Scholar

[11]

K. ChoeN. KimY. Lee and C. S. Lin, Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in$\mathbb{R} ^{2}$, J. Funct. Anal., 273 (2017), 1734-1761.  doi: 10.1016/j.jfa.2017.05.012.  Google Scholar

[12]

J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integ. Equ. Operat. Theory, 2 (1979), 174-198.  doi: 10.1007/BF01682733.  Google Scholar

[13]

D. G. de Figueiredo and E. Mitidieri, Maximum principles for cooperative elliptic systems, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 49-52.   Google Scholar

[14]

G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B, 345 (1995), 452-457.  doi: 10.1016/0370-2693(94)01649-W.  Google Scholar

[15]

X. Han and G. Huang, Existence theorems for a general $ 2\times 2$ non-Abelian Chern-Simons-Higgs system over a torus, J. Differ. Equ., 263 (2017), 1522-1551.  doi: 10.1016/j.jde.2017.03.017.  Google Scholar

[16]

P. Hess and S. Senn, Another approach to elliptic eigenvalue problems with respect to indefinite weight functions,, in Nonlinear Analysis and Optimization, Springer, Berlin, 1984. doi: 10.1007/BFb0101496.  Google Scholar

[17]

R. Janssen, The dirichlet problem for second order elliptic operators on unbounded domains, Appl. Anal., 19 (1985), 201-216.  doi: 10.1080/00036818508839545.  Google Scholar

[18]

C. KimC. LeeP. KoB. H. Lee and H. Min, Schrödinger fields on the plane with $[U(1)]^N$ Chern-Simons interactions and generalized self-dual solitons, Phys. Rev. D, 48 (1993), 1821-1840.  doi: 10.1103/PhysRevD.48.1821.  Google Scholar

[19]

C. S. LinA. C. Ponce and Y. Yang, A system of elliptic equations arising in Chern-Simons field theory, J. Funct. Anal., 247 (2007), 289-350.  doi: 10.1016/j.jfa.2007.03.010.  Google Scholar

[20]

C. S. Lin and J. V. Prajapat, Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus, Comm. Math. Phys., 288 (2009), 311-347.  doi: 10.1007/s00220-009-0774-8.  Google Scholar

[21]

E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.  doi: 10.1002/mana.19951730115.  Google Scholar

[22]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.  Google Scholar

[23] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[24] R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511526244.  Google Scholar
[25]

M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc., 72 (1966), 251-255.  doi: 10.1090/S0002-9904-1966-11485-4.  Google Scholar

[26]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, , Prentice-Hall, Inc., Englewood Cliffs, N. J. 1967  Google Scholar

[27]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.  Google Scholar

[28]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[29]

G. Sweers, Strong positivity in $C(\bar{\Omega})$ for elliptic systems, Math. Z., 209 (1992), 251-271.  doi: 10.1007/BF02570833.  Google Scholar

[30]

G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. Partial Differ. Equ., 29 (2007), 191-217.  doi: 10.1007/s00526-006-0062-9.  Google Scholar

[31]

Y. Yang, The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., 186 (1997), 199-218.  doi: 10.1007/BF02885678.  Google Scholar

show all references

References:
[1]

R. A. Adams, Compact imbeddings of weighted Sobolev spaces on unbounded domains, J. Differ. Equ., 9 (1971), 325-334.  doi: 10.1016/0022-0396(71)90085-4.  Google Scholar

[2]

I. BirindelliE. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differ. Equ., 35 (1999), 326-334.   Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[4]

H. Brezis and F. Merle, Uniform estimates and blow up behavior for solutions of $- \Delta u = V(x)e^u$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[5]

K. J. BrownC. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on$\mathbb{R}^{n}$, Proc. Amer. Math. Soc., 109 (1990), 147-155.  doi: 10.2307/2048374.  Google Scholar

[6]

J. Busca and B. Sirakov, Symmetry results for semi-linear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701.  Google Scholar

[7]

L. Cardoulis, Principal eigenvalues for systems of Schrödinger equations defined in the whole space with indefinite weights, Math. Slovaca, 65 (2015), 1079-1094.  doi: 10.1515/ms-2015-0074.  Google Scholar

[8]

K. C. Chang, Principal eigenvalue for weight matrix in elliptic systems, Nonlinear Anal., 46 (2001), 419-433.  doi: 10.1016/S0362-546X(00)00140-1.  Google Scholar

[9]

S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math., 99 (1974), 48-69.  doi: 10.2307/1971013.  Google Scholar

[10]

J. L. ChernZ. Y. Chen and C. S. Lin, Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles, Commun. Math. Phys., 296 (2010), 323-351.  doi: 10.1007/s00220-010-1021-z.  Google Scholar

[11]

K. ChoeN. KimY. Lee and C. S. Lin, Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in$\mathbb{R} ^{2}$, J. Funct. Anal., 273 (2017), 1734-1761.  doi: 10.1016/j.jfa.2017.05.012.  Google Scholar

[12]

J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integ. Equ. Operat. Theory, 2 (1979), 174-198.  doi: 10.1007/BF01682733.  Google Scholar

[13]

D. G. de Figueiredo and E. Mitidieri, Maximum principles for cooperative elliptic systems, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 49-52.   Google Scholar

[14]

G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B, 345 (1995), 452-457.  doi: 10.1016/0370-2693(94)01649-W.  Google Scholar

[15]

X. Han and G. Huang, Existence theorems for a general $ 2\times 2$ non-Abelian Chern-Simons-Higgs system over a torus, J. Differ. Equ., 263 (2017), 1522-1551.  doi: 10.1016/j.jde.2017.03.017.  Google Scholar

[16]

P. Hess and S. Senn, Another approach to elliptic eigenvalue problems with respect to indefinite weight functions,, in Nonlinear Analysis and Optimization, Springer, Berlin, 1984. doi: 10.1007/BFb0101496.  Google Scholar

[17]

R. Janssen, The dirichlet problem for second order elliptic operators on unbounded domains, Appl. Anal., 19 (1985), 201-216.  doi: 10.1080/00036818508839545.  Google Scholar

[18]

C. KimC. LeeP. KoB. H. Lee and H. Min, Schrödinger fields on the plane with $[U(1)]^N$ Chern-Simons interactions and generalized self-dual solitons, Phys. Rev. D, 48 (1993), 1821-1840.  doi: 10.1103/PhysRevD.48.1821.  Google Scholar

[19]

C. S. LinA. C. Ponce and Y. Yang, A system of elliptic equations arising in Chern-Simons field theory, J. Funct. Anal., 247 (2007), 289-350.  doi: 10.1016/j.jfa.2007.03.010.  Google Scholar

[20]

C. S. Lin and J. V. Prajapat, Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus, Comm. Math. Phys., 288 (2009), 311-347.  doi: 10.1007/s00220-009-0774-8.  Google Scholar

[21]

E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.  doi: 10.1002/mana.19951730115.  Google Scholar

[22]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.  Google Scholar

[23] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[24] R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511526244.  Google Scholar
[25]

M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc., 72 (1966), 251-255.  doi: 10.1090/S0002-9904-1966-11485-4.  Google Scholar

[26]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, , Prentice-Hall, Inc., Englewood Cliffs, N. J. 1967  Google Scholar

[27]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.  Google Scholar

[28]

H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.  Google Scholar

[29]

G. Sweers, Strong positivity in $C(\bar{\Omega})$ for elliptic systems, Math. Z., 209 (1992), 251-271.  doi: 10.1007/BF02570833.  Google Scholar

[30]

G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. Partial Differ. Equ., 29 (2007), 191-217.  doi: 10.1007/s00526-006-0062-9.  Google Scholar

[31]

Y. Yang, The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., 186 (1997), 199-218.  doi: 10.1007/BF02885678.  Google Scholar

Figure 1.  Typical behaviour of the potential $ x\mapsto V_{i}\left( x\right) $ in $ L_{i} $
[1]

Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064

[2]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[3]

Dongho Chae. Existence of a semilinear elliptic system with exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 709-718. doi: 10.3934/dcds.2007.18.709

[4]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[5]

Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189

[6]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[7]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[8]

Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237

[9]

Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193

[10]

Jincai Kang, Chunlei Tang. Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1931-1944. doi: 10.3934/dcdss.2021016

[11]

Sami Aouaoui, Rahma Jlel. On some elliptic equation in the whole euclidean space $ \mathbb{R}^2 $ with nonlinearities having new exponential growth condition. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4771-4796. doi: 10.3934/cpaa.2020211

[12]

Rafael Ortega, James R. Ward Jr. A semilinear elliptic system with vanishing nonlinearities. Conference Publications, 2003, 2003 (Special) : 688-693. doi: 10.3934/proc.2003.2003.688

[13]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[14]

M. Grossi. Existence of radial solutions for an elliptic problem involving exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 221-232. doi: 10.3934/dcds.2008.21.221

[15]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[16]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

[17]

Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119

[18]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1967-1981. doi: 10.3934/dcdss.2021008

[19]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[20]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (18)
  • HTML views (22)
  • Cited by (0)

Other articles
by authors

[Back to Top]