[1]
|
T. Alberti and D. Faranda, On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105372.
doi: 10.1016/j.cnsns.2020.105372.
|
[2]
|
J. R. Beddington, Mutual interference between parasites or predators and its efect on searching efciency, J. Anim. Ecol., 44 (1975), 331-340.
|
[3]
|
H. Berestycki, J. M. Roquejoffre and L. Rossi, Propagation of epidemics along lines with fast diffusion, Bull. Math. Biol., 81 (2021), 1-34.
doi: 10.1007/s11538-020-00826-8.
|
[4]
|
V. Capasso and G. Serio, A generalization of Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 41-61.
|
[5]
|
M. Chinazzi, J. T. Davis and M. Ajelli, et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, 368 (2020), 395-400.
doi: 10.1126/science.aba9757.
|
[6]
|
J. F. W. Chan, S. Yuan and K. H. Kok, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet, 395 (2020), 514-523.
doi: 10.1016/S0140-6736(20)30154-9.
|
[7]
|
T. Chen, J. Rui and Q. Wang, et al., A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020), 8 pp.
doi: 10.1186/s40249-020-00640-3.
|
[8]
|
V. Capasso, Mathematical Structures of Epidemic Systems, Springer-Verlag, 1993.
|
[9]
|
V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
|
[10]
|
L. S. Chen and J. Chen, Nonlinear Biological Dynamics System, Scientific Press, China, 1993.
|
[11]
|
Y. Cai, Z. Ding and B. Yang, et al., Transmission dynamics of Zika virus with spatial structure-A case study in Rio de Janeiro, Brazil, Phys. A, 514 (2019), 729-740.
doi: 10.1016/j.physa.2018.09.100.
|
[12]
|
Y. Cai, X. Lian, Z. Peng and W. Wang, Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, Nonlinear Anal. Real World Appl., 46 (2019), 178-194.
doi: 10.1016/j.nonrwa.2018.09.006.
|
[13]
|
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881-892.
|
[14]
|
N. T. Dieu, Asymptotic properties of a stochastic SIR epidemic model with Beddington-DeAngelis incidence rate, J. Dyn. Differ. Equ., 30 (2018), 93-106.
doi: 10.1007/s10884-016-9532-8.
|
[15]
|
W. Guan, Z. Ni and Y. Hu, et al., Clinical characteristics of coronavirus disease 2019 in China, New Engl. J. Med., 382 (2020), 1708-1720.
doi: 10.1056/NEJMoa2002032.
|
[16]
|
G. Giordano, F. Blanchini and R. Bruno, et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 26 (2020), 855-860.
doi: 10.1038/s41591-020-0883-7.
|
[17]
|
R. B. Guenther and J. W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover. Public. Inc, Mineola, 1996.
|
[18]
|
J. Groeger, Divergence theorems and the supersphere, J. Geom. Phys., 77 (2014), 13-29.
|
[19]
|
E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.
|
[20]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Providence, 1988.
|
[21]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
|
[22]
|
L. Hu and L. Nie, Dynamic modeling and analysis of COVID-19 in different transmission process and control strategies, Math. Method. Appl. Sci., 44 (2021), 1409-1422.
doi: 10.1002/mma.6839.
|
[23]
|
Z. Jiang and J. Wei, Stability and bifurcation analysis in a delayed SIR model, Chaos Soliton. Fract., 35 (2008), 609-619.
doi: 10.1016/j.chaos.2006.05.045.
|
[24]
|
T. W. Joseph, L. Kathy and M. L. Gabriel, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689-697.
doi: 10.1016/S0140-6736(20)30260-9.
|
[25]
|
M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Eng. J., 17 (2020), 2708-2724.
doi: 10.1016/j.aej.2020.02.033.
|
[26]
|
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.
doi: 10.1007/s11538-007-9196-y.
|
[27]
|
A. Kaddar, Stability analysis in a delayed SIR epidemic model with a saturated incidence rate, Nonlinear Anal. Model. Control., 15 (2010), 299-306.
doi: 10.15388/NA.15.3.14325.
|
[28]
|
S. Lai, N. W. Ruktanonchai and L. Zhou, et al., Effect of nonpharmaceutical interventions to contain COVID-19 in China, Nature, 585 (2020), 410-413.
doi: 10.1038/s41586-020-2293-x.
|
[29]
|
X. Luo, S. Feng and J. Yang, et al., Analysis of potential risk of COVID-19 infections in China based on a pairwise epidemic model, preprint.
|
[30]
|
Y. Luo, L. Zhang, T. Zheng and Z. D. Teng, Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence, Phys. A, 535 (2019), 122415.
doi: 10.1016/j.physa.2019.122415.
|
[31]
|
Y. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8.
|
[32]
|
Y. Mammeri, A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France, Comput. Math. Biophys., 8 2020), 102–113.
doi: 10.1515/cmb-2020-0104.
|
[33]
|
H. Nishiura, N. M. Linton and A. R. Akhmetzhanov, Serial interval of novel coronavirus (COVID-19) infections, Int. J. Infect. Dis., 93 (2020), 284-286.
doi: 10.1016/j.ijid.2020.02.060.
|
[34]
|
S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188 (2003), 135-163.
doi: 10.1016/S0022-0396(02)00089-X.
|
[35]
|
X. Ren, Y. Tian, L. Liu and X. Liu, A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831-1872.
doi: 10.1007/s00285-017-1202-x.
|
[36]
|
X. Sun, X. Huo and J. Wu, Simulation study about large-scale use of convalescent plasma therapy for the treatment of COVID-19 Patients with Critical symptoms, Acta Math. Appl. Sin. (Chin. Ser.), 43 (2020), 211-226.
|
[37]
|
P. Song, Y. Lou and L. Zhu, et al., Multi-stage and multi-scale patch model and the case study of novel coronavirus, Acta Math. Appl. Sin. (Chin. Ser.), 43 (2020), 174-199.
|
[38]
|
P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differ. Equ., 267 (2019), 5084-5114.
doi: 10.1016/j.jde.2019.05.022.
|
[39]
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci., 1995.
|
[40]
|
H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theory Methods Appl., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.
|
[41]
|
B. Tang, X. Wang and Q. Li, et al., Estimation of the transmission risk of 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 13 pp.
doi: 10.3390/jcm9020462.
|
[42]
|
H. R. Thieme, Convergence results and a Poincare-Bendixson trichoyomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267.
|
[43]
|
A. Viguerie, G. Lorenzo and F. Auricchio, et al., Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion, Appl. Math. Lett., 111 (2021), 106617.
doi: 10.1016/j.aml.2020.106617.
|
[44]
|
X. Wang, Y. Tao and X. Song, Delayed HIV-1 infection model Beddington-DeAngelis functional response, Nonlinear Dyn., 62 (2010), 67-72.
doi: 10.1007/s11071-010-9699-1.
|
[45]
|
J. Wang, F. Xie and T. Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104951.
doi: 10.1016/j.cnsns.2019.104951.
|
[46]
|
H. Wang and N. Yamamoto, Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona, Math. Biosci. Eng., 17 (2020), 4891-4904.
doi: 10.3934/mbe.2020266.
|
[47]
|
M. Wang, Nonlinear Elliptic Equations, Science Public, Beijing, 2010.
|
[48]
|
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
|
[49]
|
W. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.
|
[50]
|
L. Xue, S. Jing and J. C. Miller, et al., A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy, Math. Biosci., 326 (2020), 108391.
doi: 10.1016/j.mbs.2020.108391.
|
[51]
|
R. Xu and Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos Soliton Fract., 41 (2009), 2319-2325.
doi: 10.1016/j.chaos.2008.09.007.
|
[52]
|
C. Yang and J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724.
doi: 10.3934/mbe.2020148.
|
[53]
|
P. Zhou, X. Yang and X. Wang, et al., Discovery of a novel coronavirs associated with the recent pneumonia outbreak in humans and its potential bat origin, BioRxiv, (2020). Available from: https://doi.org/10.1101/2020.01.22.914952.
|
[54]
|
W. Zhou, A. Wang and F. Xia, et al., Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak, Math. Biosci. Eng., 17 (2020), 2693-2707.
doi: 10.3934/mbe.2020147.
|
[55]
|
L. Zhu, H. Zhao and X. Wang, Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model, Comput. Math. Appl., 69 (2015), 852-875.
doi: 10.1016/j.camwa.2015.02.004.
|
[56]
|
WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020.
|