In this paper we prove a partial Hölder regularity result for weak solutions $ u:\Omega\to \mathbb{R}^N $, $ N\geq 2 $, to non-autonomous elliptic systems with general growth of the type:
$ \begin{equation*} -{\rm{div}} a(x, u, Du) = b(x, u, Du) \quad \;{\rm{ in }}\; \Omega. \end{equation*} $
The crucial point is that the operator $ a $ satisfies very weak regularity properties and a general growth, while the inhomogeneity $ b $ has a controllable growth.
Citation: |
[1] | V. Bögelein, Partial regularity for minimizers of discontinuous quasi–convex integrals with degeneracy, J. Differ. Equ., 252 (2012), 1052-1100. doi: 10.1016/j.jde.2011.09.031. |
[2] | V. Bögelein, F. Duzaar, J. Habermann and C. Scheven, Partial Hölder continuity for discontinuous elliptic problems with VMO–coefficients, Proc. Lond. Math. Soc., 103 (2011), 371-404. doi: 10.1112/plms/pdr009. |
[3] | D. Breit and A. Verde, Quasiconvex variational functionals in Orlicz–Sobolev spaces, Ann. Mat. Pura Appl., 192 (2013), 255-271. doi: 10.1007/s10231-011-0222-1. |
[4] | P. Celada and J. Ok, Partial regularity for non–autonomous degenerate quasi–convex functionals with general growth, Nonlinear Anal., 194 (2020), 111473, 36 pp. doi: 10.1016/j.na.2019.02.026. |
[5] | E. De Giorgi, Frontiere orientate di misura minima Seminario di Matematica della, in Scuola Normale Superiore di Pisa, Editrice Tecnico Scienti ca, Pisa, 1961. |
[6] | L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 20 (2008), 523-556. doi: 10.1515/FORUM.2008.027. |
[7] | L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the $p$-Laplacian equation, SIAM J. Num. Anal., 46 (2008), 614-638. doi: 10.1137/070681508. |
[8] | L. Diening, D. Lengeler, B. Stroffolini and A. Verde, Partial regularity for minimizer of quasi-convex functional with general growth, SIAM J. Math. Anal., 44 (2012), 3594-3616. doi: 10.1137/120870554. |
[9] | L. Diening, B. Stroffolini and A. Verde, Everywhere regularity of functionals with $\phi$-growth, Manuscripta Math., 129 (2009), 449-481. doi: 10.1007/s00229-009-0277-0. |
[10] | L. Diening, B. Stroffolini and A. Verde, The $\varphi$-harmonic approximation and the regularity of $\varphi$-harmonic maps, J. Differ. Equ., 253 (2012), 1943-1958. doi: 10.1016/j.jde.2012.06.010. |
[11] | P. Di Gironimo, L. Esposito and L. Sgambati, A remark on $L^{2, \lambda}$ regularity for minimizers of quadratic functionals, Manuscripta Math., 113 (2004), 143-151. doi: 10.1007/s00229-003-0429-6. |
[12] | F. Duzaar and J. F. Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of $\mathcal{A} $-harmonic approximation, Manuscripta Math., 103 (2000), 267-298. doi: 10.1007/s002290070007. |
[13] | F. Duzaar, J. F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi–convex variational integrals with subquadratic growth, Ann. Mat. Pura Appl., 184 (2005), 421-448. doi: 10.1007/s10231-004-0117-5. |
[14] | F. Duzaar and M. Kronz, Regularity of $\omega$-minimizers of quasi-convex variational integrals with polynomial growth, Differ. Geom. Appl., 17 (2002), 139-152. doi: 10.1016/S0926-2245(02)00104-3. |
[15] | F. Duzaar and G. Mingione, The $p$-harmonic approximation and the regularity of $p$-harmonic maps, Calc. Var. Partial Differ. Equ., 20 (2004), 235-256. doi: 10.1007/s00526-003-0233-x. |
[16] | F. Duzaar and G. Mingione, Harmonic type approximation lemmas, J. Math. Anal. Appl., 352 (2009), 301-335. doi: 10.1016/j.jmaa.2008.09.076. |
[17] | M. Foss and G. Mingione, Partial continuity for elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 471-503. doi: 10.1016/j.anihpc.2007.02.003. |
[18] | E. Giusti and M. Miranda, Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasilineari, Arch. Ration. Mech. Anal., 31 (1968/69), 173-184. doi: 10.1007/BF00282679. |
[19] | C. Goodrich, G. Scilla and B. Stroffolini, Partial Hölder continuity for minimizers of discontinuous quasiconvex integrals with VMO coefficients and general growth, preprint, 2021. |
[20] | T. Isernia, C. Leone and A. Verde, Partial regularity results for asymptotic quasiconvex functionals with general growth, Ann. Acad. Sci. Fenn. Math., 41 (2016), 817-844. doi: 10.5186/aasfm.2016.4155. |
[21] | J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398. doi: 10.1007/s00205-005-0402-5. |
[22] | J. Kristensen and G. Mingione, The singular set of Lipschitzian minima of multiple integrals, Arch. Ration. Mech. Anal., 184 (2007), 341-369. doi: 10.1007/s00205-006-0036-2. |
[23] | J. Kristensen and G. Mingione, Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198 (2010), 369-455. doi: 10.1007/s00205-010-0294-x. |
[24] | G. M. Lieberman, Boundary regularity for solutions of degenerate parabolic equations, Nonlinear Anal., 14 (1990), 501-524. doi: 10.1016/0362-546X(90)90038-I. |
[25] | P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. doi: 10.1007/BF00251503. |
[26] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$–growth conditions, J. Differ. Equ., 90 (1991), 1-30. doi: 10.1016/0022-0396(91)90158-6. |
[27] | P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 1-25. |
[28] | C. B. Morrey, Quasi–convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. |
[29] | J. Ok, Partial Hölder regularity for elliptic systems with non-standard growth, J. Funct. Anal., 274 (2018), 723-768. doi: 10.1016/j.jfa.2017.11.014. |
[30] | M. Ragusa and A. Tachikawa, Partial regularity of the minimizers of quadratic functionals with VMO coefficients, J. Lond. Math. Soc., 72 (2005), 609-620. doi: 10.1112/S002461070500699X. |
[31] | M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146 Marcel Dekker, Inc., New York, 1991. |
[32] | L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Birkhäuser Verlag, Basel, 1996. doi: 10.1007/978-3-0348-9193-6. |
[33] | B. Stroffolini, Partial regularity results for quasimonotone elliptic systems with general growth, Z. Anal. Anwend., 39 (2020), 315-347. doi: 10.4171/zaa/1662. |
[34] | S. Z. Zheng, Partial regularity for quasi-linear elliptic systems with VMO coefficients under the natural growth, Chinese Ann. Math. Ser. A, 29 (2008), 49-58. |