
-
Previous Article
Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion
- CPAA Home
- This Issue
-
Next Article
Partial regularity result for non-autonomous elliptic systems with general growth
Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $
1. | School of Mathematics, Monash University, VIC 3800, Australia |
2. | College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China |
The Zakharov system in dimension $ d = 2,3 $ is shown to have a local unique solution for any initial values in the space $ H^{s} \times H^{l} \times H^{l-1} $, where a new range of regularity $ (s, l) $ is given, especially at the line $ s-l = -1 $. The result is obtained mainly by the normal form reduction and the Strichartz estimates.
References:
[1] |
I. Bejenaru, Z. Guo, S. Herr and K. Nakanishi,
Well-posedness and scattering for the Zakharov system in four dimensions, Analysis & PDE, 8 (2015), 2029-2055.
doi: 10.2140/apde.2015.8.2029. |
[2] |
I. Bejenaru, S. Herr, J. Holmer and D. Tataru,
On the 2D Zakharov system with $L^2$-Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007. |
[3] |
I. Bejenaru and S. Herr,
Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011), 478-506.
doi: 10.1016/j.jfa.2011.03.015. |
[4] |
J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices, (1996), 515–546.
doi: 10.1155/S1073792896000359. |
[5] |
T. Candy, S. Herr and K. Nakanishi, The Zakharov system in dimension $d\geq 4$, preprint, arXiv: 1912.05820v2. |
[6] |
J. Colliander, J. Holmer and N. Tzirakis,
Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc., 360 (2008), 4619-4638.
doi: 10.1090/S0002-9947-08-04295-5. |
[7] |
D. Fang, H. Pecher and S. Zhong,
Low regularity global well-posedness for the two-dimensional Zakharov system, Analysis (Munich), 29 (2009), 265-281.
doi: 10.1524/anly.2009.1018. |
[8] |
J. Ginibre, Y. Tsutsumi and G. Velo,
On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[9] |
Z. Guo, S. Lee, K. Nakanishi and C. Wang,
Generalized Strichartz estimates and scattering for 3D Zakharov system, Commun. Math. Phys., 331 (2014), 239-259.
doi: 10.1007/s00220-014-2006-0. |
[10] |
Z. Guo and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Math. Res. Not., (2014), 2327–2342.
doi: 10.1093/imrn/rns296. |
[11] |
Z. Guo and K. Nakanishi, The Zakharov system in 4D radial energy space below the ground state, preprint, arXiv: 1810.05794. |
[12] |
Z. Guo, K. Nakanishi and S. Wang,
Global dynamics below the ground state energy for the Klein-Gordon-Zakharov system in the 3D radial case, Commun. Partial Differ. Equ., 39 (2014), 1158-1184.
doi: 10.1080/03605302.2013.836715. |
[13] |
I. Kato and K. Tsugawa,
Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, Differ. Integral Equ., 30 (2017), 763-794.
|
[14] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
|
[15] |
N. Kishimoto,
Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253.
doi: 10.1007/s11854-013-0007-0. |
[16] |
H. Pecher,
Global solutions with infinite energy for the one-dimensional Zakharov system, Electron. J. Differ. Equ., 2005 (2005), 1-18.
|
[17] |
A. Sanwal, Local well-posedness for the Zakharov system in dimension $d \leq 3$, preprint, arXiv: 2103.09259. |
[18] |
V. E. Zakharov,
Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.
|
show all references
References:
[1] |
I. Bejenaru, Z. Guo, S. Herr and K. Nakanishi,
Well-posedness and scattering for the Zakharov system in four dimensions, Analysis & PDE, 8 (2015), 2029-2055.
doi: 10.2140/apde.2015.8.2029. |
[2] |
I. Bejenaru, S. Herr, J. Holmer and D. Tataru,
On the 2D Zakharov system with $L^2$-Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007. |
[3] |
I. Bejenaru and S. Herr,
Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011), 478-506.
doi: 10.1016/j.jfa.2011.03.015. |
[4] |
J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices, (1996), 515–546.
doi: 10.1155/S1073792896000359. |
[5] |
T. Candy, S. Herr and K. Nakanishi, The Zakharov system in dimension $d\geq 4$, preprint, arXiv: 1912.05820v2. |
[6] |
J. Colliander, J. Holmer and N. Tzirakis,
Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc., 360 (2008), 4619-4638.
doi: 10.1090/S0002-9947-08-04295-5. |
[7] |
D. Fang, H. Pecher and S. Zhong,
Low regularity global well-posedness for the two-dimensional Zakharov system, Analysis (Munich), 29 (2009), 265-281.
doi: 10.1524/anly.2009.1018. |
[8] |
J. Ginibre, Y. Tsutsumi and G. Velo,
On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[9] |
Z. Guo, S. Lee, K. Nakanishi and C. Wang,
Generalized Strichartz estimates and scattering for 3D Zakharov system, Commun. Math. Phys., 331 (2014), 239-259.
doi: 10.1007/s00220-014-2006-0. |
[10] |
Z. Guo and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Math. Res. Not., (2014), 2327–2342.
doi: 10.1093/imrn/rns296. |
[11] |
Z. Guo and K. Nakanishi, The Zakharov system in 4D radial energy space below the ground state, preprint, arXiv: 1810.05794. |
[12] |
Z. Guo, K. Nakanishi and S. Wang,
Global dynamics below the ground state energy for the Klein-Gordon-Zakharov system in the 3D radial case, Commun. Partial Differ. Equ., 39 (2014), 1158-1184.
doi: 10.1080/03605302.2013.836715. |
[13] |
I. Kato and K. Tsugawa,
Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, Differ. Integral Equ., 30 (2017), 763-794.
|
[14] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
|
[15] |
N. Kishimoto,
Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253.
doi: 10.1007/s11854-013-0007-0. |
[16] |
H. Pecher,
Global solutions with infinite energy for the one-dimensional Zakharov system, Electron. J. Differ. Equ., 2005 (2005), 1-18.
|
[17] |
A. Sanwal, Local well-posedness for the Zakharov system in dimension $d \leq 3$, preprint, arXiv: 2103.09259. |
[18] |
V. E. Zakharov,
Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.
|

[1] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[2] |
Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1067-1103. doi: 10.3934/dcds.2021147 |
[3] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[4] |
Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338 |
[5] |
Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019 |
[6] |
Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087 |
[7] |
Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811 |
[8] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[9] |
Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061 |
[10] |
Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036 |
[11] |
Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075 |
[12] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[13] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
[14] |
Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006 |
[15] |
Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure and Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899 |
[16] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[17] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[18] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[19] |
Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803 |
[20] |
Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]