• Previous Article
    Analysis of a diffusive cholera model incorporating latency and bacterial hyperinfectivity
  • CPAA Home
  • This Issue
  • Next Article
    Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure
doi: 10.3934/cpaa.2021161
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $

1. 

School of Mathematics, Monash University, VIC 3800, Australia

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China

* Corresponding author

Received  April 2021 Revised  August 2021 Early access September 2021

Fund Project: The second author is partially supported by the Chinese Scholarship Council (No. 201906050022)

The Zakharov system in dimension $ d = 2,3 $ is shown to have a local unique solution for any initial values in the space $ H^{s} \times H^{l} \times H^{l-1} $, where a new range of regularity $ (s, l) $ is given, especially at the line $ s-l = -1 $. The result is obtained mainly by the normal form reduction and the Strichartz estimates.

Citation: Zijun Chen, Shengkun Wu. Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021161
References:
[1]

I. BejenaruZ. GuoS. Herr and K. Nakanishi, Well-posedness and scattering for the Zakharov system in four dimensions, Analysis & PDE, 8 (2015), 2029-2055.  doi: 10.2140/apde.2015.8.2029.  Google Scholar

[2]

I. BejenaruS. HerrJ. Holmer and D. Tataru, On the 2D Zakharov system with $L^2$-Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.  doi: 10.1088/0951-7715/22/5/007.  Google Scholar

[3]

I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011), 478-506.  doi: 10.1016/j.jfa.2011.03.015.  Google Scholar

[4]

J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices, (1996), 515–546. doi: 10.1155/S1073792896000359.  Google Scholar

[5]

T. Candy, S. Herr and K. Nakanishi, The Zakharov system in dimension $d\geq 4$, preprint, arXiv: 1912.05820v2. Google Scholar

[6]

J. CollianderJ. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc., 360 (2008), 4619-4638.  doi: 10.1090/S0002-9947-08-04295-5.  Google Scholar

[7]

D. FangH. Pecher and S. Zhong, Low regularity global well-posedness for the two-dimensional Zakharov system, Analysis (Munich), 29 (2009), 265-281.  doi: 10.1524/anly.2009.1018.  Google Scholar

[8]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[9]

Z. GuoS. LeeK. Nakanishi and C. Wang, Generalized Strichartz estimates and scattering for 3D Zakharov system, Commun. Math. Phys., 331 (2014), 239-259.  doi: 10.1007/s00220-014-2006-0.  Google Scholar

[10]

Z. Guo and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Math. Res. Not., (2014), 2327–2342. doi: 10.1093/imrn/rns296.  Google Scholar

[11]

Z. Guo and K. Nakanishi, The Zakharov system in 4D radial energy space below the ground state, preprint, arXiv: 1810.05794. Google Scholar

[12]

Z. GuoK. Nakanishi and S. Wang, Global dynamics below the ground state energy for the Klein-Gordon-Zakharov system in the 3D radial case, Commun. Partial Differ. Equ., 39 (2014), 1158-1184.  doi: 10.1080/03605302.2013.836715.  Google Scholar

[13]

I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, Differ. Integral Equ., 30 (2017), 763-794.   Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.   Google Scholar

[15]

N. Kishimoto, Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253.  doi: 10.1007/s11854-013-0007-0.  Google Scholar

[16]

H. Pecher, Global solutions with infinite energy for the one-dimensional Zakharov system, Electron. J. Differ. Equ., 2005 (2005), 1-18.   Google Scholar

[17]

A. Sanwal, Local well-posedness for the Zakharov system in dimension $d \leq 3$, preprint, arXiv: 2103.09259. Google Scholar

[18]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.   Google Scholar

show all references

References:
[1]

I. BejenaruZ. GuoS. Herr and K. Nakanishi, Well-posedness and scattering for the Zakharov system in four dimensions, Analysis & PDE, 8 (2015), 2029-2055.  doi: 10.2140/apde.2015.8.2029.  Google Scholar

[2]

I. BejenaruS. HerrJ. Holmer and D. Tataru, On the 2D Zakharov system with $L^2$-Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.  doi: 10.1088/0951-7715/22/5/007.  Google Scholar

[3]

I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011), 478-506.  doi: 10.1016/j.jfa.2011.03.015.  Google Scholar

[4]

J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices, (1996), 515–546. doi: 10.1155/S1073792896000359.  Google Scholar

[5]

T. Candy, S. Herr and K. Nakanishi, The Zakharov system in dimension $d\geq 4$, preprint, arXiv: 1912.05820v2. Google Scholar

[6]

J. CollianderJ. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc., 360 (2008), 4619-4638.  doi: 10.1090/S0002-9947-08-04295-5.  Google Scholar

[7]

D. FangH. Pecher and S. Zhong, Low regularity global well-posedness for the two-dimensional Zakharov system, Analysis (Munich), 29 (2009), 265-281.  doi: 10.1524/anly.2009.1018.  Google Scholar

[8]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[9]

Z. GuoS. LeeK. Nakanishi and C. Wang, Generalized Strichartz estimates and scattering for 3D Zakharov system, Commun. Math. Phys., 331 (2014), 239-259.  doi: 10.1007/s00220-014-2006-0.  Google Scholar

[10]

Z. Guo and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Math. Res. Not., (2014), 2327–2342. doi: 10.1093/imrn/rns296.  Google Scholar

[11]

Z. Guo and K. Nakanishi, The Zakharov system in 4D radial energy space below the ground state, preprint, arXiv: 1810.05794. Google Scholar

[12]

Z. GuoK. Nakanishi and S. Wang, Global dynamics below the ground state energy for the Klein-Gordon-Zakharov system in the 3D radial case, Commun. Partial Differ. Equ., 39 (2014), 1158-1184.  doi: 10.1080/03605302.2013.836715.  Google Scholar

[13]

I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, Differ. Integral Equ., 30 (2017), 763-794.   Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.   Google Scholar

[15]

N. Kishimoto, Local well-posedness for the Zakharov system on the multidimensional torus, J. Anal. Math., 119 (2013), 213-253.  doi: 10.1007/s11854-013-0007-0.  Google Scholar

[16]

H. Pecher, Global solutions with infinite energy for the one-dimensional Zakharov system, Electron. J. Differ. Equ., 2005 (2005), 1-18.   Google Scholar

[17]

A. Sanwal, Local well-posedness for the Zakharov system in dimension $d \leq 3$, preprint, arXiv: 2103.09259. Google Scholar

[18]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914.   Google Scholar

Figure 1.  Region of regularity $ (s, l) $
[1]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[2]

Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021147

[3]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[4]

Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338

[5]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[6]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[7]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[8]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[9]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[10]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[11]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[12]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[13]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[14]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[15]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[16]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[17]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[18]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[19]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[20]

Alex M. Montes, Ricardo Córdoba. Local well-posedness for a class of 1D Boussinesq systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021030

2020 Impact Factor: 1.916

Article outline

Figures and Tables

[Back to Top]