• Previous Article
    Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
  • CPAA Home
  • This Issue
  • Next Article
    Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence
doi: 10.3934/cpaa.2021162
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion

Department of Mathematics, Jilin University, Changchun 130012, China

* Corresponding author

Received  April 2021 Revised  August 2021 Early access September 2021

Fund Project: This work is supported by the Jilin Scientific and Technological Development Program (no. 20210101466JC)

In this paper, we consider a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion in two-dimensional smooth bounded domains. It is proved that the existence of time periodic solution for any $ \frac{15}{7}\leq p<3 $ and any large periodic source $ g_1(x,t) $ and $ g_2(x,t) $.

Citation: Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021162
References:
[1]

X. CaoS. Kurima and M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.  doi: 10.1002/mma.4807.  Google Scholar

[2]

J. Han and C. Liu, Global existence for a two-species chemotaxis-Navier-Stokes system with p-Laplacian, Electron. Res. Arch., http://dx.doi.org/10.3934/era.2021050. doi: 10.3934/era.2021050.  Google Scholar

[3]

J. Huang and C. Jin, Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion, Discrete Contin. Dyn. Syst., 40 (2020), 5415-5439.  doi: 10.3934/dcds.2020233.  Google Scholar

[4]

C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24pp. doi: 10.1007/s00033-017-0882-9.  Google Scholar

[5]

C. Jin, Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.  doi: 10.1002/mana.201600180.  Google Scholar

[6]

C. Jin, Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinb. Sect. A, 150 (2020), 3121-3152.  doi: 10.1017/prm.2019.62.  Google Scholar

[7]

C. Liu and P. Li, Global existence for a chemotaxis-haptotaxis model with p-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 1399-1419.  doi: 10.3934/cpaa.2020070.  Google Scholar

[8]

C. Liu and P. Li, Time periodic solutions for a two-species chemotaxis-Navier-Stokes system, Discret. Contin. Dynam. Syst. Series B., 26 (2021), 4567-4585.  doi: 10.3934/dcdsb.2020303.  Google Scholar

[9]

J. Liu, Boundedness in a Chemotaxis-Navier-Stokes System modeling coral fertilization with slow p-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), 31 pp. doi: 10.1007/s00021-019-0469-7.  Google Scholar

[10]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[11]

W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.  doi: 10.1016/j.nonrwa.2018.06.005.  Google Scholar

[12]

W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differ. Equ., 268 (2020), 6872-6919.  doi: 10.1016/j.jde.2019.11.078.  Google Scholar

[13]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[14]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[15]

M. Winkler, Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[16]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[18]

J. Yin and C. Jin, Periodic solutions of the evolutionary p-Laplacian with nonlinear sources, J. Math. Anal. Appl., 368 (2010), 604-622.  doi: 10.1016/j.jmaa.2010.03.006.  Google Scholar

show all references

References:
[1]

X. CaoS. Kurima and M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.  doi: 10.1002/mma.4807.  Google Scholar

[2]

J. Han and C. Liu, Global existence for a two-species chemotaxis-Navier-Stokes system with p-Laplacian, Electron. Res. Arch., http://dx.doi.org/10.3934/era.2021050. doi: 10.3934/era.2021050.  Google Scholar

[3]

J. Huang and C. Jin, Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion, Discrete Contin. Dyn. Syst., 40 (2020), 5415-5439.  doi: 10.3934/dcds.2020233.  Google Scholar

[4]

C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24pp. doi: 10.1007/s00033-017-0882-9.  Google Scholar

[5]

C. Jin, Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.  doi: 10.1002/mana.201600180.  Google Scholar

[6]

C. Jin, Periodic pattern formation in the coupled chemotaxis-(Navier-)Stokes system with mixed nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinb. Sect. A, 150 (2020), 3121-3152.  doi: 10.1017/prm.2019.62.  Google Scholar

[7]

C. Liu and P. Li, Global existence for a chemotaxis-haptotaxis model with p-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 1399-1419.  doi: 10.3934/cpaa.2020070.  Google Scholar

[8]

C. Liu and P. Li, Time periodic solutions for a two-species chemotaxis-Navier-Stokes system, Discret. Contin. Dynam. Syst. Series B., 26 (2021), 4567-4585.  doi: 10.3934/dcdsb.2020303.  Google Scholar

[9]

J. Liu, Boundedness in a Chemotaxis-Navier-Stokes System modeling coral fertilization with slow p-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), 31 pp. doi: 10.1007/s00021-019-0469-7.  Google Scholar

[10]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[11]

W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.  doi: 10.1016/j.nonrwa.2018.06.005.  Google Scholar

[12]

W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differ. Equ., 268 (2020), 6872-6919.  doi: 10.1016/j.jde.2019.11.078.  Google Scholar

[13]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[14]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[15]

M. Winkler, Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[16]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[18]

J. Yin and C. Jin, Periodic solutions of the evolutionary p-Laplacian with nonlinear sources, J. Math. Anal. Appl., 368 (2010), 604-622.  doi: 10.1016/j.jmaa.2010.03.006.  Google Scholar

[1]

Changchun Liu, Pingping Li. Time periodic solutions for a two-species chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4567-4585. doi: 10.3934/dcdsb.2020303

[2]

Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, , () : -. doi: 10.3934/era.2021050

[3]

Xu Pan, Liangchen Wang. On a quasilinear fully parabolic two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021047

[4]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[5]

Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178

[6]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[7]

Wenji Zhang, Pengcheng Niu. Asymptotics in a two-species chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4281-4298. doi: 10.3934/dcdsb.2020288

[8]

Alexander Kurganov, Mária Lukáčová-Medvidová. Numerical study of two-species chemotaxis models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 131-152. doi: 10.3934/dcdsb.2014.19.131

[9]

Hai-Yang Jin, Tian Xiang. Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1919-1942. doi: 10.3934/dcdsb.2018249

[10]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[11]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[12]

Xinyu Tu, Chunlai Mu, Pan Zheng, Ke Lin. Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3617-3636. doi: 10.3934/dcds.2018156

[13]

Liangchen Wang, Chunlai Mu. A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4585-4601. doi: 10.3934/dcdsb.2020114

[14]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

[15]

Rong Zhang, Liangchen Wang. Global dynamics in a competitive two-species and two-stimuli chemotaxis system with chemical signalling loop. Electronic Research Archive, , () : -. doi: 10.3934/era.2021086

[16]

Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5461-5480. doi: 10.3934/dcdsb.2019066

[17]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[18]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[19]

Tai-Chia Lin, Zhi-An Wang. Development of traveling waves in an interacting two-species chemotaxis model. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2907-2927. doi: 10.3934/dcds.2014.34.2907

[20]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021231

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (60)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]