doi: 10.3934/cpaa.2021163
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama city, Kanagawa, JAPAN

Received  May 2021 Revised  August 2021 Early access September 2021

We consider the Cauchy problems for Schrödinger equations with an inverse-square potential and a harmonic one. Since the Mehler type formulas are completed, the pseudo-conformal transforms can be constructed. Thus we can convert the problems into the nonautonomous Schrödinger equations without a harmonic oscillator.

Citation: Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021163
References:
[1]

K. AoudaN. KandaS. Naka and H. Toyoda, Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect, Phys. Rev. D, 102 (2020), 025002.  doi: 10.1103/physrevd.102.025002.  Google Scholar

[2]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[3]

F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys., 10 (1969), 2191-2196.   Google Scholar

[4]

F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436 ("Erratum", ibidem 37 (1996), 3646). doi: 10.1063/1.1665604.  Google Scholar

[5]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.  doi: 10.1137/S0036141002416936.  Google Scholar

[6]

N. Dunford and J. T. Schwartz, Linear operators. Part Ⅱ: Spectral theory, Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963.  Google Scholar

[7]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.  Google Scholar

[8]

G. Metafune and M. Sobajima, Spectral properties of non-selfadjoint extensions of the Calogero Hamiltonian, Funkcial. Ekvac., 59 (2016), 123-140.  doi: 10.1619/fesi.59.123.  Google Scholar

[9]

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220.  doi: 10.1016/0001-8708(75)90151-6.  Google Scholar

[10]

N. OkazawaT. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.  doi: 10.1080/00036811.2011.631914.  Google Scholar

[11]

N. OkazawaT. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354.  doi: 10.3934/eect.2012.1.337.  Google Scholar

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Ⅱ, Academic Press, New York, 1975.   Google Scholar
[13]

T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333.  doi: 10.7153/dea-06-17.  Google Scholar

[14]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.  doi: 10.1619/fesi.59.1.  Google Scholar

[15]

T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352.  doi: 10.7153/dea-2017-09-24.  Google Scholar

[16]

T. Suzuki, Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods, Evol. Equ. Control Theory, 8 (2019), 447-471.  doi: 10.3934/eect.2019022.  Google Scholar

[17]

T. Suzuki, Semilinear Schrödinger equations with a potential of some critical inverse-square type, J. Differ. Equ., 268 (2020), 7629-7668.  doi: 10.1016/j.jde.2019.11.087.  Google Scholar

[18]

S. Watanabe, The explicit solutions to the time-dependent Schrödinger equation with the singular potentials $k/(2x^{2})$ and $k/(2x^{2})+\omega^{2}x^{2}/2$, Commun. Partial Diff. Equ., 26 (2001), 571-593.  doi: 10.1081/PDE-100002238.  Google Scholar

show all references

References:
[1]

K. AoudaN. KandaS. Naka and H. Toyoda, Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect, Phys. Rev. D, 102 (2020), 025002.  doi: 10.1103/physrevd.102.025002.  Google Scholar

[2]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[3]

F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys., 10 (1969), 2191-2196.   Google Scholar

[4]

F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436 ("Erratum", ibidem 37 (1996), 3646). doi: 10.1063/1.1665604.  Google Scholar

[5]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.  doi: 10.1137/S0036141002416936.  Google Scholar

[6]

N. Dunford and J. T. Schwartz, Linear operators. Part Ⅱ: Spectral theory, Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963.  Google Scholar

[7]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.  Google Scholar

[8]

G. Metafune and M. Sobajima, Spectral properties of non-selfadjoint extensions of the Calogero Hamiltonian, Funkcial. Ekvac., 59 (2016), 123-140.  doi: 10.1619/fesi.59.123.  Google Scholar

[9]

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220.  doi: 10.1016/0001-8708(75)90151-6.  Google Scholar

[10]

N. OkazawaT. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.  doi: 10.1080/00036811.2011.631914.  Google Scholar

[11]

N. OkazawaT. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354.  doi: 10.3934/eect.2012.1.337.  Google Scholar

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Ⅱ, Academic Press, New York, 1975.   Google Scholar
[13]

T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333.  doi: 10.7153/dea-06-17.  Google Scholar

[14]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.  doi: 10.1619/fesi.59.1.  Google Scholar

[15]

T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352.  doi: 10.7153/dea-2017-09-24.  Google Scholar

[16]

T. Suzuki, Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods, Evol. Equ. Control Theory, 8 (2019), 447-471.  doi: 10.3934/eect.2019022.  Google Scholar

[17]

T. Suzuki, Semilinear Schrödinger equations with a potential of some critical inverse-square type, J. Differ. Equ., 268 (2020), 7629-7668.  doi: 10.1016/j.jde.2019.11.087.  Google Scholar

[18]

S. Watanabe, The explicit solutions to the time-dependent Schrödinger equation with the singular potentials $k/(2x^{2})$ and $k/(2x^{2})+\omega^{2}x^{2}/2$, Commun. Partial Diff. Equ., 26 (2001), 571-593.  doi: 10.1081/PDE-100002238.  Google Scholar

[1]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[2]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[3]

Toshiyuki Suzuki. Energy methods for Hartree type equations with inverse-square potentials. Evolution Equations & Control Theory, 2013, 2 (3) : 531-542. doi: 10.3934/eect.2013.2.531

[4]

Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inverse-square potentials. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 65-107. doi: 10.3934/dcds.2011.31.65

[5]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Abdelaziz Rhandi. Kolmogorov equations perturbed by an inverse-square potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 623-630. doi: 10.3934/dcdss.2011.4.623

[6]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[7]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[8]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[9]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[10]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[11]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[12]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[13]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[14]

Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, Jiqiang Zheng. The energy-critical NLS with inverse-square potential. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3831-3866. doi: 10.3934/dcds.2017162

[15]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[16]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[17]

Lei Wei, Xiyou Cheng, Zhaosheng Feng. Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7169-7189. doi: 10.3934/dcds.2016112

[18]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[19]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[20]

Kazuhiro Ishige, Yujiro Tateishi. Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021121

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (64)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]