We consider the Cauchy problems for Schrödinger equations with an inverse-square potential and a harmonic one. Since the Mehler type formulas are completed, the pseudo-conformal transforms can be constructed. Thus we can convert the problems into the nonautonomous Schrödinger equations without a harmonic oscillator.
Citation: |
[1] |
K. Aouda, N. Kanda, S. Naka and H. Toyoda, Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect, Phys. Rev. D, 102 (2020), 025002.
doi: 10.1103/physrevd.102.025002.![]() ![]() ![]() |
[2] |
N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.
doi: 10.1512/iumj.2004.53.2541.![]() ![]() ![]() |
[3] |
F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys., 10 (1969), 2191-2196.
![]() |
[4] |
F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436 ("Erratum", ibidem 37 (1996), 3646).
doi: 10.1063/1.1665604.![]() ![]() ![]() |
[5] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.
doi: 10.1137/S0036141002416936.![]() ![]() ![]() |
[6] |
N. Dunford and J. T. Schwartz, Linear operators. Part Ⅱ: Spectral theory, Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963.
![]() ![]() |
[7] |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.
![]() ![]() |
[8] |
G. Metafune and M. Sobajima, Spectral properties of non-selfadjoint extensions of the Calogero Hamiltonian, Funkcial. Ekvac., 59 (2016), 123-140.
doi: 10.1619/fesi.59.123.![]() ![]() ![]() |
[9] |
J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220.
doi: 10.1016/0001-8708(75)90151-6.![]() ![]() ![]() |
[10] |
N. Okazawa, T. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.
doi: 10.1080/00036811.2011.631914.![]() ![]() ![]() |
[11] |
N. Okazawa, T. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354.
doi: 10.3934/eect.2012.1.337.![]() ![]() ![]() |
[12] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Ⅱ, Academic Press, New York, 1975.
![]() ![]() |
[13] |
T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333.
doi: 10.7153/dea-06-17.![]() ![]() ![]() |
[14] |
T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.
doi: 10.1619/fesi.59.1.![]() ![]() ![]() |
[15] |
T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352.
doi: 10.7153/dea-2017-09-24.![]() ![]() ![]() |
[16] |
T. Suzuki, Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods, Evol. Equ. Control Theory, 8 (2019), 447-471.
doi: 10.3934/eect.2019022.![]() ![]() ![]() |
[17] |
T. Suzuki, Semilinear Schrödinger equations with a potential of some critical inverse-square type, J. Differ. Equ., 268 (2020), 7629-7668.
doi: 10.1016/j.jde.2019.11.087.![]() ![]() ![]() |
[18] |
S. Watanabe, The explicit solutions to the time-dependent Schrödinger equation with the singular potentials $k/(2x^{2})$ and $k/(2x^{2})+\omega^{2}x^{2}/2$, Commun. Partial Diff. Equ., 26 (2001), 571-593.
doi: 10.1081/PDE-100002238.![]() ![]() ![]() |