In this paper we continue the work that we began in [
$ -\mathrm{div}\left(A(|x| )|\nabla u|^{p-2} \nabla u\right) +V\left( \left| x\right| \right) |u|^{p-2}u = K(|x|) f(u) \quad \text{in }\mathbb{R}^{N}, $
where all the potentials $ A,V,K $ may be singular or vanishing, at the origin or at infinity. We find existence of nonnegative solutions by the application of variational methods, for which we need to study the compactness of the embedding of a suitable function space $ X $ into the sum of Lebesgue spaces $ L_{K}^{q_{1}}+L_{K}^{q_{2}} $. The nonlinearity has a double-power super $ p $-linear behavior, as $ f(t) = \min \left\{ t^{q_1 -1}, t^{q_2 -1} \right\} $ with $ q_1,q_2>p $ (recovering the power case if $ q_1 = q_2 $). With respect to [
Citation: |
[1] |
T. V. Anoop, P. Drábek and S. Sasi, Weighted quasilinear eigenvalue problems in exterior domains, Calc. Var. Partial Differ. Equ., 53 (2015), 961-975.
doi: 10.1007/s00526-014-0773-2.![]() ![]() ![]() |
[2] |
M. Badiale, S. Greco and S. Rolando, Radial solutions of a biharmonic equation with vanishing or singular radial potential, Nonlinear Anal., 185 (2019), 97-122.
doi: 10.1016/j.na.2019.01.011.![]() ![]() ![]() |
[3] |
M. Badiale, M. Guida and S. Rolando, Compactness and existence results for the $p$-Laplace equation, J. Math. Anal. Appl., 451 (2017), 345-370.
doi: 10.1016/j.jmaa.2017.02.011.![]() ![]() ![]() |
[4] |
M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence, Nonlinear Differ. Equ. Appl., 23 (2017), 34 pp.
doi: 10.1007/s00030-016-0411-0.![]() ![]() ![]() |
[5] |
M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions. Part I: Compactness, Calc. Var. Partial Differ. Equ., 54 (2015), 1061-1090.
doi: 10.1007/s00526-015-0817-2.![]() ![]() ![]() |
[6] |
M. Badiale, M. Guida and S. Rolando, Compactness and existence results for quasilinear elliptic problems with singular or vanishing potentials, Anal. Appl., 19 (2021), 751-777.
doi: 10.1142/S0219530521500020.![]() ![]() ![]() |
[7] |
M. Badiale, L. Pisani and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA, Nonlinear Differ. Equ. Appl., 18 (2011), 369-405.
doi: 10.1007/s00030-011-0100-y.![]() ![]() ![]() |
[8] |
M. Badiale and F. Zaccagni, Radial nonlinear elliptic problems with singular or vanishing potentials, Adv.Nonlinear Stud., 18 (2018), 409-428.
doi: 10.1515/ans-2018-0007.![]() ![]() ![]() |
[9] |
H. Cai, J. Su and Y. Sun, Sobolev type embeddings and an inhomogeneous quasilinear elliptic equation on $\mathbb{R}^N$ with singular weights, Nonlinear Anal., 96 (2014), 59-67.
doi: 10.1016/j.na.2013.11.002.![]() ![]() ![]() |
[10] |
M. Guida and S. Rolando, Nonlinear Schrödinger equations without compatibility conditions on the potentials, J. Math. Anal. Appl., 439 (2016), 347-363.
doi: 10.1016/j.jmaa.2016.02.061.![]() ![]() ![]() |
[11] |
J. Su, Quasilinear elliptic equations on $\mathbb{R}^{N}$ with singular potentials and bounded nonlinearity, Z. Angew. Math. Phys., 63 (2012), 51-62.
doi: 10.1007/s00033-011-0138-z.![]() ![]() ![]() |
[12] |
J. Su and R. Tian, Weighted Sobolev type embeddings and coercive quasilinear elliptic equations on $\mathbb{R}^{N}$, Proc. Amer. Math. Soc., 140 (2012), 891-903.
doi: 10.1090/S0002-9939-2011-11289-9.![]() ![]() ![]() |
[13] |
J. Su, Z.-Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.
doi: 10.1142/S021919970700254X.![]() ![]() ![]() |
[14] |
J. Su, Z.-Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.
doi: 10.1016/j.jde.2007.03.018.![]() ![]() ![]() |
[15] |
J. Su and Z.-Q. Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials, J. Differ. Equ., 250 (2011), 223-242.
doi: 10.1016/j.jde.2010.08.025.![]() ![]() ![]() |
[16] |
Y. Yang and J. Zhang, A note on the existence of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting, Bound. Value Probl., 2012 (2012), 7 pp.
doi: 10.1186/1687-2770-2012-136.![]() ![]() ![]() |
[17] |
G. Zhang, Weighted Sobolev spaces and ground state solutions for quasilinear elliptic problems with unbounded and decaying potentials, Bound. Value Probl., 2013 (2013), 15 pp.
doi: 10.1186/1687-2770-2013-189.![]() ![]() ![]() |