\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity and existence of positive solutions for a fractional system

  • * Corresponding author

    * Corresponding author
The first author is partially supported by NSFC 11701207
Abstract Full Text(HTML) Related Papers Cited by
  • We consider the nonlinear fractional elliptic system

    $ \begin{equation*} \left\{\begin{array}{ll} (- \Delta)^{\frac{\alpha_1}{2}}u(x) = f(x, u, v), & \text{in}\, \, \, \Omega, \\ (- \Delta)^{\frac{\alpha_2}{2}}v(x) = g(x, u, v), & \text{in}\, \, \, \Omega, \\ u = v = 0, & \text{in}\, \, \, \mathbb{R}^n\setminus\Omega, \end{array} \right. \label{a-1.2} \end{equation*} $

    where $ 0<\alpha_1, \alpha_2<2 $ and $ \Omega $ is a bounded domain with $ C^2 $ boundary in $ \mathbb{R}^n $. To overcome the technical difficulty due to the different fractional orders, we employ two distinct methods and derive the a priori estimates for $ 0<\alpha_1, \alpha_2<1 $ and $ 1<\alpha_1, \alpha_2 <2 $ respectively. Moreover, combining the a priori estimate with the topological degree theory, we prove the existence of positive solutions.

    Mathematics Subject Classification: Primary: 35B09, 35S15; Secondary: 35B44, 35B45, 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. Adams and  J. FournierSobolev Spaces, Academic Press, 2003. 
    [2] G. AlbertiG. Bouchitté and P. Seppecher, Phase transition with the line-tension effect, Arch. Ration. Mech. Anal., 144 (1998), 1-46.  doi: 10.1007/s002050050111.
    [3] B. BarriosL. M. Del PezzoJ. G. Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, Rev. Mat. Iberoam., 34 (2018), 195-220.  doi: 10.4171/RMI/983.
    [4] T. BartschN. Dancer and Z. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.
    [5] J. BertoinLévy Processes, Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, 1996. 
    [6] K. BogdanT. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556. 
    [7] L. CaffarelliJ. M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.
    [8] L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.
    [9] W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.
    [10] W. ChenC. Li and Y. Li, A direct blowng-up and rescaling argument on nonlocal elliptic equations, Int. J. Math., 27 (2016), 1650064.  doi: 10.1142/S0129167X16500646.
    [11] W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd, 2020. doi: 10.1142/10550.
    [12] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financ. Math. Ser., Chapman and Hall/CRC, Boca Raton, FL, 2004.
    [13] S. Dipierro and A. Pinamont, A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian, J. Differ. Equ., 255 (2013), 85-119.  doi: 10.1016/j.jde.2013.04.001.
    [14] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin, 1976, translated from French by C.W. John.
    [15] P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.
    [16] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial. Differ. Equ., 6 (1981), 883-901.  doi: 10.1080/03605308108820196.
    [17] M. d. M. González, Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ., 36 (2009), 173-210.  doi: 10.1007/s00526-009-0225-6.
    [18] D. Kriventsov, $C^{1, \alpha}$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Commun. Partial. Differ. Equ., 38 (2013), 2081-2106.  doi: 10.1080/03605302.2013.831990.
    [19] E. Leite and M. Montenegro, On positive viscosity solutions of fractional Lane-Emden systems, Topol. Methods Nonlinear Anal., 53 (2019), 407-425.  doi: 10.12775/tmna.2019.005.
    [20] Y. Li and P. Ma, Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.  doi: 10.1007/s11425-016-0231-x.
    [21] L. Lin, A priori bounds and existence result of positive solutions for fractional Laplacian systems, Discrete Contin. Dyn. Syst., 39 (2019), 1517-1531.  doi: 10.3934/dcds.2019065.
    [22] P. PoláčikP. Quittner and P. Souplet, Singularity and decay estimate in superlinear problems via Liouville-type theorem. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.
    [23] A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equation and systems involving frctional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.
    [24] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures. Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.
    [25] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.
    [26] R. Zhuo and Y. Li, Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian, Discrete Contin. Dyn. Syst., 39 (2019), 1595-1611.  doi: 10.3934/dcds.2019071.
    [27] R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.
    [28] A. ZoiaA. Rosso and K. Kardar, Fractional Laplacian in bounded domains, Phys. Rev. E, 76 (2007), 021116.  doi: 10.1103/PhysRevE.76.021116.
  • 加载中
SHARE

Article Metrics

HTML views(665) PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return