[1]
|
S. Ahmad, S. Owyed, A. H. Abdel-Aty, E. E. Mahmoud, K. Shah and h. Alrabaiah, Mathematical analysis of COVID-19 via new mathematical model, Chaos, Solitons & Fractals, 143 (2021), 110585.
doi: 10.1016/j.chaos.2020.110585.
|
[2]
|
R. M. Anderson, H. Heesterbeek, D. Klinkenberg and T. d. Hollingworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic?, The lancet, 395 (2020), 931-934.
|
[3]
|
F. Braur, Compartmental models in epidemiology, Math. epid., 5 (2008), 19-79.
doi: 10.1007/978-3-540-78911-6_2.
|
[4]
|
D. D. S. Candido, A. Watts and L Abade et. al, Routes for COVID-19 importation in Brazil, J. Travel Med., 27 (2020), taaa042.
|
[5]
|
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404.
doi: 10.3934/mbe.2004.1.361.
|
[6]
|
C. Castillo-Chavez, S. Blower, P. Van den Driessche, D. Kirschner and A. Yakuba, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, Springer, New York, 2002.
doi: 10.1007/978-1-4613-0065-6.
|
[7]
|
K. Chatterjee, K. Chatterjee, A. Kumar and S. Shankar, Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model, Med. J. Arm. Force. India, 76 (2020), 147-155.
|
[8]
|
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bullet. math. biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0.
|
[9]
|
Covid-19 india: New cases vs cured, 2020, 2020-09-30.
|
[10]
|
COVID-19 Pandemic Data/Peru Medical Cases, July 2021, Available from: https://en.wikipedia.org/wiki/Template:COVID-19_pandemic_data/Peru_medical_cases.
|
[11]
|
Coronavirus Cases, July 2021, Available from: https://www.worldometers.info/coronavirus/#countries.
|
[12]
|
W. M. de Souza, L. F. Buss, D. da Silva Candido et. al, Epidemiological and clinical characteristics of the early phase of the COVID-19 epidemic in Brazil, medRxiv.
|
[13]
|
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. Roy. Soc. Inter., 7 (2010), 873-885.
|
[14]
|
A. Din, Y. Li, T. Khan and G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos, Solitons & Fractals, 141 (2020), 110286.
doi: 10.1016/j.chaos.2020.110286.
|
[15]
|
C. Fraser, S. Riley and R. M. Anderson, Factors that make an infectious disease outbreak controllable, Proceed. Nation. Acad. Sci., 101 (2004), 6146-6151.
|
[16]
|
T. Ganyani, C. Kremer, D. Chen, A. Torneri, C. Faes, J. Wallinga and N. Hens, Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020, Eurosurveillance, 25 (2020), 2000257.
|
[17]
|
M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, r. Casarandi and A. Rinaldo, Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures, Proceed. Nation. Acad. Sci., 17 (2020), 10484-10491.
|
[18]
|
S. He, Y. Peng and K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear dynam., 101 (2020), 1667-1680.
|
[19]
|
J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis and T. W. Russell et. al, Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, The Lancet Global Health, 8 (2020), e488–e496.
|
[20]
|
C. Hou, J. Chen, Y. Zhou, L. Hua and J. Yuan et. al, The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis, J. med. virol., 92 (2020), 841-848.
|
[21]
|
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan and J. Xu et. al, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The lancet, 395 (2020), 497–506.
doi: 10.3934/mbe.2020148.
|
[22]
|
B. Ivorra, M. R. Ferrández, M. Vela-Pérez and A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. nonlinear sci. numer. simul., 88 (2020), 105303.
doi: 10.1016/j.cnsns.2020.105303.
|
[23]
|
N. Kumari and S. Sharma, Modeling the dynamics of infectious disease under the influence of environmental pollution, Int. J. Appl. Comput. Math., 4 (2018), 1-24.
doi: 10.1007/s40819-018-0514-x.
|
[24]
|
S. A. Lauer, K. H. Grantz, Q. Bi and F. K. Jones et. al, The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. intern. med., 172 (2020), 577-582.
|
[25]
|
T. Liu, D. Gong, J. Xiao, J. Hu, G. He, Z. Rong and W. Ma, Cluster infections play important roles in the rapid evolution of COVID-19 transmission: a systematic review, Int. J. Infect. Diseases, 139 (2020), 374-380.
doi: 10.1016/j.ijid.2020.07.073.
|
[26]
|
S. Marimuthu, M. Joy, B. Malavika, A. Nadaraj, E. S. Asirvatham and L. Jeyaseelan, Modelling of reproduction number for COVID-19 in India and high incidence states, Clinical Epidemiology and Global Health, 9 (2021), 57-61.
|
[27]
|
C. V. Munayco, A. Tariq and R. Rothenberg et. al, Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th–March 30th, 2020, Infect. Disease Model., 5 (2020), 338–345.
|
[28]
|
F. Ndaïrou, I. Area, J. J. Nieto and D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons & Fractals, 135 (2020), 109846.
doi: 10.1016/j.chaos.2020.109846.
|
[29]
|
A. J. Rodriguez-Morales and V. Gallego et. al, COVID-19 in Latin America: The implications of the first confirmed case in Brazil, Travel med. infect. disease, 35 (2020), 101613.
|
[30]
|
P. Samui, J. Mondal and S. Khajanchi, A mathematical model for COVID-19 transmission dynamics with a case study of India, Chaos, Solitons & Fractals, 140 (2020), 110173.
doi: 10.1016/j.chaos.2020.110173.
|
[31]
|
K. Sarkar, S. Khajanchi and J. J. Nieto, Modeling and forecasting the COVID-19 pandemic in India, Chaos, Solitons & Fractals, 139 (2020), 110049.
doi: 10.1016/j.chaos.2020.110049.
|
[32]
|
T. Sardar, S. S. Nadim, S. Rana and J Chattopadhyay, Healthcare Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak, Chaos, Solitons & Fractals, 139 (2020), 110078.
doi: 10.1016/j.chaos.2020.110078.
|
[33]
|
S. Sharma and n. Kumari, Why to consider environmental pollution in cholera modeling?, Math. Methods Appl. Sci., 40 (2017), 6348-6370.
doi: 10.1002/mma.4461.
|
[34]
|
P. Van den Driessche and J. Watmough, Further notes on the basic reproduction number, in Mathematical Epidemiology, Springer, Berlin, Heidelberg, 2008,159–178.
doi: 10.1007/978-3-540-78911-6_6.
|
[35]
|
Weekly operational update on covid-19, 9 september 2020, 2020.
|
[36]
|
WHO Director-General's remarks, 2020.
|
[37]
|
S. Zhao, Q. Lin, J. Ran, S. S. Musa and G. Yang et. al, Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A datadriven analysis in the early phase of the outbreak, Int. j. infect. dis., 92 (2020), 214-217.
|