• Previous Article
    Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure
  • CPAA Home
  • This Issue
  • Next Article
    Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry
doi: 10.3934/cpaa.2021172
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Singular solutions of a Hénon equation involving a nonlinear gradient term

1. 

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

2. 

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, 34149-16818, Qazvin, Iran

* Corresponding author

Received  March 2021 Revised  September 2021 Early access September 2021

Here, we consider positive singular solutions of
$ \begin{equation*} \left\{ \begin{array}{lcc} -\Delta u = |x|^\alpha |\nabla u|^p & \text{in}& \Omega \backslash\{0\},\\ u = 0&\text{on}& \partial \Omega, \end{array} \right. \end{equation*} $
where
$ \Omega $
is a small smooth perturbation of the unit ball in
$ \mathbb{R}^N $
and
$ \alpha $
and
$ p $
are parameters in a certain range. Using an explicit solution on
$ B_1 $
and a linearization argument, we obtain positive singular solutions on perturbations of the unit ball.
Citation: Craig Cowan, Abdolrahman Razani. Singular solutions of a Hénon equation involving a nonlinear gradient term. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021172
References:
[1]

A. AghajaniC. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Anal., 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.  Google Scholar

[2]

A. AghajaniC. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Differ. Equ., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.  Google Scholar

[3]

J. Ching and F. C. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.  Google Scholar

[4]

C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Differ. Equ., 269 (2020), 3914-3942.  doi: 10.1016/j.jde.2020.03.017.  Google Scholar

[5]

C. Cowan and A. Razani, Singular solutions of a Lane-Emden system, Discrete Contin. Dyn. Syst., 41 (2021), 621-656.  doi: 10.3934/dcds.2020291.  Google Scholar

[6]

J. DávilaM. del Pino and M. Musso, The Supercritical Lane-Emden-Fowler Equation in Exterior Domains, Commun. Partial Differ. Equ., 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.  Google Scholar

[7]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar

[8]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems (Variational problems and related topics), (Kyoto, 2002). 1307 (2003), 85–108.  Google Scholar

[9]

M. del PinoP. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron problem, Calc. Var. Partial Differ. Equ., 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar

[10]

V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.  Google Scholar

[11]

M. Gherga and V. Rădulescu, Nonlinear PDEs, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.  Google Scholar

[12]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[13]

N. GrenonF. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.  Google Scholar

[14]

N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.  Google Scholar

[15]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differ. Geom., 44 (1996), 331-370.   Google Scholar

[16]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[17]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar

[18]

A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.  Google Scholar

[19]

M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin, Springer-Verlag, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar

[20]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Differ. Equ., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

show all references

References:
[1]

A. AghajaniC. Cowan and S. H. Lui, Existence and regularity of nonlinear advection problems, Nonlinear Anal., 166 (2018), 19-47.  doi: 10.1016/j.na.2017.10.007.  Google Scholar

[2]

A. AghajaniC. Cowan and S. H. Lui, Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball, J. Differ. Equ., 264 (2018), 2865-2896.  doi: 10.1016/j.jde.2017.11.009.  Google Scholar

[3]

J. Ching and F. C. Cirstea, Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, 8 (2015), 1931-1962.  doi: 10.2140/apde.2015.8.1931.  Google Scholar

[4]

C. Cowan and A. Razani, Singular solutions of a $p$-Laplace equation involving the gradient, J. Differ. Equ., 269 (2020), 3914-3942.  doi: 10.1016/j.jde.2020.03.017.  Google Scholar

[5]

C. Cowan and A. Razani, Singular solutions of a Lane-Emden system, Discrete Contin. Dyn. Syst., 41 (2021), 621-656.  doi: 10.3934/dcds.2020291.  Google Scholar

[6]

J. DávilaM. del Pino and M. Musso, The Supercritical Lane-Emden-Fowler Equation in Exterior Domains, Commun. Partial Differ. Equ., 32 (2007), 1225-1243.  doi: 10.1080/03605300600854209.  Google Scholar

[7]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar

[8]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems (Variational problems and related topics), (Kyoto, 2002). 1307 (2003), 85–108.  Google Scholar

[9]

M. del PinoP. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron problem, Calc. Var. Partial Differ. Equ., 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar

[10]

V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., 42 (2000), 13309-1326.  doi: 10.1016/S0362-546X(99)00165-0.  Google Scholar

[11]

M. Gherga and V. Rădulescu, Nonlinear PDEs, Springer-Verlag, Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-22664-9.  Google Scholar

[12]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[13]

N. GrenonF. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 23-28.  doi: 10.1016/j.crma.2005.09.027.  Google Scholar

[14]

N. Grenon and C. Trombetti, Existence results for a class of nonlinear elliptic problems with $p$-growth in the gradient, Nonlinear Anal., 52 (2003), 931-942.  doi: 10.1016/S0362-546X(02)00143-8.  Google Scholar

[15]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differ. Geom., 44 (1996), 331-370.   Google Scholar

[16]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[17]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar

[18]

A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.  doi: 10.1016/j.matpur.2005.10.009.  Google Scholar

[19]

M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin, Springer-Verlag, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar

[20]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Differ. Equ., 228 (2006), 661-684.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

[1]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[2]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[3]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[4]

Ru-Yu Lai, Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021051

[5]

Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

[6]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032

[7]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[8]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[9]

Xuan Liu, Ting Zhang. $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039

[10]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[11]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[12]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[13]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

[14]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[15]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[16]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[17]

J. Chen, K. Murillo, E. M. Rocha. Two nontrivial solutions of a class of elliptic equations with singular term. Conference Publications, 2011, 2011 (Special) : 272-281. doi: 10.3934/proc.2011.2011.272

[18]

Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083

[19]

Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254

[20]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

2020 Impact Factor: 1.916

Article outline

[Back to Top]