doi: 10.3934/cpaa.2021174
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Self-Improving inequalities for bounded weak solutions to nonlocal double phase equations

1. 

Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260

2. 

Department of Mathematics, 1403 Circle Drive, Knoxville, TN 37996

* Corresponding author

Received  January 2021 Early access October 2021

Fund Project: This work is partially supported by NSF grant number 1910180

We prove higher Sobolev regularity for bounded weak solutions to a class of nonlinear nonlocal integro-differential equations. The leading operator exhibits nonuniform growth, switching between two different fractional elliptic "phases" that are determined by the zero set of a modulating coefficient. Solutions are shown to improve both in integrability and differentiability. These results apply to operators with rough kernels and modulating coefficients. To obtain these results we adapt a particular fractional version of the Gehring lemma developed by Kuusi, Mingione, and Sire in their work "Nonlocal self-improving properties" Analysis & PDE, 8(1):57–114 for the specific nonlinear setting under investigation in this manuscript.

Citation: James M. Scott, Tadele Mengesha. Self-Improving inequalities for bounded weak solutions to nonlocal double phase equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021174
References:
[1]

K. Adimurthi, T. Mengesha and N. C. Phuc, Gradient weighted norm inequalities for linear elliptic equations with discontinuous coefficients, Appl. Math. Optim., 2018, 1–45. doi: 10.1007/s00245-018-9542-5.  Google Scholar

[2]

P. BaroniM. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 206-222.  doi: 10.1016/j.na.2014.11.001.  Google Scholar

[3]

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57 (2018), 48 pp. doi: 10.1007/s00526-018-1332-z.  Google Scholar

[4]

R. F. Bass and M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Commun. Partial Differ. Equ., 30 (2005), 1249-1259.  doi: 10.1080/03605300500257677.  Google Scholar

[5]

L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case, Adv. Math., 304 (2017), 300-354.  doi: 10.1016/j.aim.2016.03.039.  Google Scholar

[6]

L. BrascoE. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.  Google Scholar

[7]

S-S. Byun and H-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl., 25 (2020), 3843-3855.  doi: 10.1016/j.jmaa.2020.124015.  Google Scholar

[8]

S-S. Byun and J. Oh, Global gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domains, J. Differ. Equ., 263 (2017), 1643-1693.  doi: 10.1016/j.jde.2017.03.025.  Google Scholar

[9]

S-S. Byun, J. Ok and K. Song, Holder Regularity for weak solutions to nonlocal double phase problems, preprint, arXiv: 2108.09623. Google Scholar

[10]

S-S. Byun and Y. Youn, Riesz potential estimates for a class of double phase problems, J. Differ. Equ., 264 (2018), 1263-1316.  doi: 10.1016/j.jde.2017.09.038.  Google Scholar

[11]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[12]

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443-496.  doi: 10.1007/s00205-014-0785-2.  Google Scholar

[13]

M. Colombo and G. Mingione, Calderón–Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416-1478.  doi: 10.1016/j.jfa.2015.06.022.  Google Scholar

[14]

C. De Filippis, On the regularity of the $\omega$-minima of $\varphi$-functionals, preprint, arXiv: 1810.06050. doi: 10.1016/j.na.2019.02.017.  Google Scholar

[15]

C. De Filippis and G. Mingione, A borderline case of Calderón-Zygmund estimates for nonuniformly elliptic problems, St. Petersburg Math. J., 31 (2020), 455-477.  doi: 10.1090/spmj/1608.  Google Scholar

[16]

C. De Filippis and J. Oh, Regularity for multi-phase variational problems, J. Differ. Equ., 267 (2019), 1631-1670.  doi: 10.1016/j.jde.2019.02.015.  Google Scholar

[17]

C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equ., 267 (2019), 547-586.  doi: 10.1016/j.jde.2019.01.017.  Google Scholar

[18] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (AM-105), Princeton University Press, 1983.   Google Scholar
[19]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. doi: 10.1142/9789812795557.  Google Scholar

[20]

Y. Fang and C. Zhang, On weak and viscosity solutions of nonlocal double phase equations, arXiv: 2106.04412. Google Scholar

[21]

T. KuusiG. Mingione and Y. Sire, A fractional Gehring lemma, with applications to nonlocal equations, Rendiconti Lincei-Matematica e Applicazioni, 25 (2014), 345-358.  doi: 10.4171/RLM/683.  Google Scholar

[22]

T. KuusiG. Mingione and Y. Sire, Nonlocal self-improving properties, Anal. PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57.  Google Scholar

[23]

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.  doi: 10.1007/BF00251503.  Google Scholar

[24]

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equ., 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[25]

P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differ. Equ., 105 (1993), 296-333.  doi: 10.1006/jdeq.1993.1091.  Google Scholar

[26]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 23 (1996), 1-25.   Google Scholar

[27]

T. Mengesha and J. M. Scott, A fractional Korn-type inequality for smooth domains and a regularity estimate for nonlinear nonlocal systems of equations, preprint, arXiv: 2011.12407. doi: 10.3934/dcds.2019137.  Google Scholar

[28]

T. Mengesha and J. M. Scott, A note on estimates of level sets and their role in demonstrating regularity of solutions to nonlocal double phase equations, preprint, arXiv: 2011.12407 Google Scholar

[29]

G. Mingione, The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., 166 (2003), 287-301.  doi: 10.1007/s00205-002-0231-8.  Google Scholar

[30]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[31]

J. Ok, Partial regularity for general systems of double phase type with continuous coefficients, Nonlinear Anal., 177 (2018), 673-698.  doi: 10.1016/j.na.2018.03.021.  Google Scholar

[32]

G. Palatucci, The Dirichlet problem for the p-fractional Laplace equation, Nonlinear Anal., 177 (2018), 699-732.  doi: 10.1016/j.na.2018.05.004.  Google Scholar

[33]

P. Pucci and V. Radulescu, The maximum principle with lack of monotonicity, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 1-11.  doi: 10.14232/ejqtde.2018.1.58.  Google Scholar

[34]

A. Schikorra, Nonlinear commutators for the fractional p-Laplacian and applications, Math. Ann., 366 (2016), 695-720.  doi: 10.1007/s00208-015-1347-0.  Google Scholar

[35]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987), 34 pp.  Google Scholar

[36]

V. V. Zhikov, On Lavrentiev's phenomenon., Russian J. Math. Phys., 3 (1995), 249-269.   Google Scholar

show all references

References:
[1]

K. Adimurthi, T. Mengesha and N. C. Phuc, Gradient weighted norm inequalities for linear elliptic equations with discontinuous coefficients, Appl. Math. Optim., 2018, 1–45. doi: 10.1007/s00245-018-9542-5.  Google Scholar

[2]

P. BaroniM. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 206-222.  doi: 10.1016/j.na.2014.11.001.  Google Scholar

[3]

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57 (2018), 48 pp. doi: 10.1007/s00526-018-1332-z.  Google Scholar

[4]

R. F. Bass and M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Commun. Partial Differ. Equ., 30 (2005), 1249-1259.  doi: 10.1080/03605300500257677.  Google Scholar

[5]

L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case, Adv. Math., 304 (2017), 300-354.  doi: 10.1016/j.aim.2016.03.039.  Google Scholar

[6]

L. BrascoE. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.  Google Scholar

[7]

S-S. Byun and H-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl., 25 (2020), 3843-3855.  doi: 10.1016/j.jmaa.2020.124015.  Google Scholar

[8]

S-S. Byun and J. Oh, Global gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domains, J. Differ. Equ., 263 (2017), 1643-1693.  doi: 10.1016/j.jde.2017.03.025.  Google Scholar

[9]

S-S. Byun, J. Ok and K. Song, Holder Regularity for weak solutions to nonlocal double phase problems, preprint, arXiv: 2108.09623. Google Scholar

[10]

S-S. Byun and Y. Youn, Riesz potential estimates for a class of double phase problems, J. Differ. Equ., 264 (2018), 1263-1316.  doi: 10.1016/j.jde.2017.09.038.  Google Scholar

[11]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[12]

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443-496.  doi: 10.1007/s00205-014-0785-2.  Google Scholar

[13]

M. Colombo and G. Mingione, Calderón–Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416-1478.  doi: 10.1016/j.jfa.2015.06.022.  Google Scholar

[14]

C. De Filippis, On the regularity of the $\omega$-minima of $\varphi$-functionals, preprint, arXiv: 1810.06050. doi: 10.1016/j.na.2019.02.017.  Google Scholar

[15]

C. De Filippis and G. Mingione, A borderline case of Calderón-Zygmund estimates for nonuniformly elliptic problems, St. Petersburg Math. J., 31 (2020), 455-477.  doi: 10.1090/spmj/1608.  Google Scholar

[16]

C. De Filippis and J. Oh, Regularity for multi-phase variational problems, J. Differ. Equ., 267 (2019), 1631-1670.  doi: 10.1016/j.jde.2019.02.015.  Google Scholar

[17]

C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equ., 267 (2019), 547-586.  doi: 10.1016/j.jde.2019.01.017.  Google Scholar

[18] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (AM-105), Princeton University Press, 1983.   Google Scholar
[19]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. doi: 10.1142/9789812795557.  Google Scholar

[20]

Y. Fang and C. Zhang, On weak and viscosity solutions of nonlocal double phase equations, arXiv: 2106.04412. Google Scholar

[21]

T. KuusiG. Mingione and Y. Sire, A fractional Gehring lemma, with applications to nonlocal equations, Rendiconti Lincei-Matematica e Applicazioni, 25 (2014), 345-358.  doi: 10.4171/RLM/683.  Google Scholar

[22]

T. KuusiG. Mingione and Y. Sire, Nonlocal self-improving properties, Anal. PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57.  Google Scholar

[23]

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.  doi: 10.1007/BF00251503.  Google Scholar

[24]

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equ., 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[25]

P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differ. Equ., 105 (1993), 296-333.  doi: 10.1006/jdeq.1993.1091.  Google Scholar

[26]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 23 (1996), 1-25.   Google Scholar

[27]

T. Mengesha and J. M. Scott, A fractional Korn-type inequality for smooth domains and a regularity estimate for nonlinear nonlocal systems of equations, preprint, arXiv: 2011.12407. doi: 10.3934/dcds.2019137.  Google Scholar

[28]

T. Mengesha and J. M. Scott, A note on estimates of level sets and their role in demonstrating regularity of solutions to nonlocal double phase equations, preprint, arXiv: 2011.12407 Google Scholar

[29]

G. Mingione, The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., 166 (2003), 287-301.  doi: 10.1007/s00205-002-0231-8.  Google Scholar

[30]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[31]

J. Ok, Partial regularity for general systems of double phase type with continuous coefficients, Nonlinear Anal., 177 (2018), 673-698.  doi: 10.1016/j.na.2018.03.021.  Google Scholar

[32]

G. Palatucci, The Dirichlet problem for the p-fractional Laplace equation, Nonlinear Anal., 177 (2018), 699-732.  doi: 10.1016/j.na.2018.05.004.  Google Scholar

[33]

P. Pucci and V. Radulescu, The maximum principle with lack of monotonicity, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 1-11.  doi: 10.14232/ejqtde.2018.1.58.  Google Scholar

[34]

A. Schikorra, Nonlinear commutators for the fractional p-Laplacian and applications, Math. Ann., 366 (2016), 695-720.  doi: 10.1007/s00208-015-1347-0.  Google Scholar

[35]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987), 34 pp.  Google Scholar

[36]

V. V. Zhikov, On Lavrentiev's phenomenon., Russian J. Math. Phys., 3 (1995), 249-269.   Google Scholar

[1]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[2]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[3]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021051

[4]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[5]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[6]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[7]

Martin Bohner, Osman Tunç. Qualitative analysis of integro-differential equations with variable retardation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021059

[8]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[9]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[10]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[11]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[12]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[13]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[14]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[15]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[16]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044

[17]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[18]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[19]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[20]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (63)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]