In this paper, we establish a large deviation principle for stochastic Burgers type equation with reflection perturbed by the small multiplicative noise. The main difficulties come from the highly non-linear coefficient and the singularity caused by the reflection. Here, we adopt a new sufficient condition for the weak convergence criteria, which is proposed by Matoussi, Sabbagh and Zhang [
Citation: |
[1] |
A. Budhiraja and P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 20 (2000), 39-61.
![]() ![]() |
[2] |
A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods, Springer, New York, 2019.
doi: 10.1007/978-1-4939-9579-0.![]() ![]() ![]() |
[3] |
A. Budhiraja, P. Dupuis and V. Maroulas, Large deviations for infinite dimensional stochastic dynamical systems continuous time processes, Ann. Probab., 36 (2008), 1390-1420.
doi: 10.1214/07-AOP362.![]() ![]() ![]() |
[4] |
A. Budhiraja, P. Dupuis and V. Maroulas, Variational representations for continuous time processes, Ann. Inst. H. Poincaré Probab. Statist., 47 (2011), 725-747.
doi: 10.1214/10-AIHP382.![]() ![]() ![]() |
[5] |
V. Cardon-Weber, Large deviations for a Burgers'-type SPDE, Stochastic Process. Appl., 84 (1999), 53-70.
doi: 10.1016/S0304-4149(99)00047-2.![]() ![]() ![]() |
[6] |
R. Dalang, C. Mueller and L. Zambotti, Hitting properties of parabolic S.P.D.E.'s with reflection, Ann. Probab., 34 (2006), 1423-1450.
doi: 10.1214/009117905000000792.![]() ![]() ![]() |
[7] |
C. Donati-Martin and E. Pardoux, White noise driven SPDEs with reflection, Probab. Theory Related Fields, 95 (1993), 1-24.
doi: 10.1007/BF01197335.![]() ![]() ![]() |
[8] |
Z. Dong, J. Wu, R. Zhang and T. Zhang, Large deviation principles for first-order scalar conservation laws with stochastic forcing, Ann. Appl. Probab., 30 (2020), 324-367.
doi: 10.1214/19-AAP1503.![]() ![]() ![]() |
[9] |
Z. Dong, J. Xiong, J. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017), 227-254.
doi: 10.1016/j.jfa.2016.10.012.![]() ![]() ![]() |
[10] |
T. Funaki and S. Olla, Fluctuations for $\nabla \varphi$ interface model on a wall, Stochastic Process. Appl., 94 (2001), 1-27.
doi: 10.1016/S0304-4149(00)00104-6.![]() ![]() ![]() |
[11] |
W. Liu, C. Tao and J. Zhu, Large deviation principle for a class of SPDE with locally monotone coefficients, Sci. China Math., 63 (2020), 1181-1202.
doi: 10.1007/s11425-018-9440-3.![]() ![]() ![]() |
[12] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Berlin, Springer, 2015.
doi: 10.1007/978-3-319-22354-4.![]() ![]() ![]() |
[13] |
K. Magdalena, Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections, Ann. Inst. Henri Poincaré Probab. Stat., 49 (2013), 160–181.
doi: 10.1214/11-AIHP444.![]() ![]() ![]() |
[14] |
A. Matoussi, W. Sabbagh and T. Zhang, Large deviation principles of obstacle problems for quasilinear stochastic PDEs, Appl. Math. Optim., 83 (2021), 849-879.
doi: 10.1007/s00245-019-09570-5.![]() ![]() ![]() |
[15] |
D. Nualart and E. Pardoux, White noise driven by quasilinear SPDEs with reflection, Probab. Theory Related Fields, 93 (1992), 77-89.
doi: 10.1007/BF01195389.![]() ![]() ![]() |
[16] |
J. Ren and J. Wu, On uniform large deviations principle for multi-valued SDEs via the viscosity solution approach, Chin. Ann. Math. Ser. B, 40 (2019), 285-308.
doi: 10.1007/s11401-019-0133-9.![]() ![]() ![]() |
[17] |
J. Ren, J. Wu and H. Zhang, General large deviations and functional iterated logarithm law for multivalued stochastic differential equations, J. Theoret. Probab., 28 (2015), 550-586.
doi: 10.1007/s10959-013-0531-y.![]() ![]() ![]() |
[18] |
J. Ren, S. Xu and X. Zhang, Large deviation for multivalued stochastic differential equations, J. Theoret. Probab., 23 (2010), 1142-1156.
doi: 10.1007/s10959-009-0274-y.![]() ![]() ![]() |
[19] |
R. Wang, J. Zhai and T. Zhang, A moderate deviation principle for 2-D stochastic Navier-Stokes equations, J. Differ. Equ., 258 (2015), 3363-3390.
doi: 10.1016/j.jde.2015.01.008.![]() ![]() ![]() |
[20] |
J. Wu, Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto J. Math., 51 (2011), 535-559.
doi: 10.1215/21562261-1299891.![]() ![]() ![]() |
[21] |
J. Xiong and J. L. Zhai, Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise, Bernoulli, 24 (2018), 2429-2460.
doi: 10.3150/17-BEJ947.![]() ![]() ![]() |
[22] |
T. Xu and T. Zhang, White noise driven SPDEs with reflection: existence, uniqueness and large deviation principles, Stochastic Process. Appl., 119 (2009), 3453-3470.
doi: 10.1016/j.spa.2009.06.005.![]() ![]() ![]() |
[23] |
S. Yang and T. Zhang, Strong solutions to reflecting stochastic differential equations with singular drift, preprint, arXiv: 2002.12150.
![]() |
[24] |
T. Zhang, Large deviations for invariant measures of SPDEs with two reflecting walls, Stochastic Process. Appl., 122 (2012), 3425-3444.
doi: 10.1016/j.spa.2012.06.003.![]() ![]() ![]() |
[25] |
T. Zhang, Lattice approximations of reflected stochastic partial differential equations driven by space-time white noise, Ann. Appl. Probab., 26 (2016), 3602-3629.
doi: 10.1214/16-AAP1186.![]() ![]() ![]() |
[26] |
T. Zhang, Stochastic Burgers type equations with reflection: existence, uniqueness, J. Differ. Equ., 267 (2019), 4537-4571.
doi: 10.1016/j.jde.2019.05.008.![]() ![]() ![]() |
[27] |
W. Zheng, J. Zhai and T. Zhang, Moderate deviations for stochastic models of two-dimensional second-grade fluids driven by Lévy noise, Commun. Math. Stat., 6 (2018), 583–612.
doi: 10.1007/s40304-018-0165-6.![]() ![]() ![]() |