-
Previous Article
Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation
- CPAA Home
- This Issue
-
Next Article
Variation operators for semigroups associated with Fourier-Bessel expansions
A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications
1. | Department of Ecology and Biology (DEB), Tuscia University, Largo dell'Università, 01100 Viterbo, Italy |
2. | Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA |
3. | Department of Mathematics and Computer Science, University of Florence, Viale Morgagni 67/A, 50134 Firenze - Italy |
We first prove that solutions of fractional p-Laplacian problems with nonlocal Neumann boundary conditions are bounded and then we apply such a result to study some resonant problems by means of variational tools and Morse theory.
References:
[1] |
A. Audrito, J.-C. Felipe-Navarro and X. Ros-Oton, The Neumann problem for the fractional Laplacian: regularity up to the boundary, arXiv: 2006.10026. |
[2] |
B. Barrios, L. Montoro, I. Peral and F. Soria,
Neumann conditions for the higher order $s$-fractional Laplacian $(-\Delta)^s u$ with $s > 1$, Nonlinear Anal., 193 (2020), 111-368.
doi: 10.1016/j.na.2018.10.012. |
[3] |
K.-C. Chang and N. Ghoussoub,
The Conley index and the critical groups via an extension of Gromoll-Meyer theory, Topol. Methods Nonlinear Anal., 7 (1996), 77-93.
doi: 10.12775/TMNA.1996.003. |
[4] |
J.-N. Corvellec and Ha ntoute.,
Homotopical stability of isolated critical points of continuous functionals, Set-Valued Anal., 10 (2002), 143-164.
doi: 10.1023/A:1016544301594. |
[5] |
M. Degiovanni, S. Lancelotti and K. Perera, Nontrivial solutions of $p-$superlinear $p-$Laplacian problems via a cohomological local splitting, Commun. Contemp. Math., 12 (2010), 475–486.
doi: 10.1142/S0219199710003890. |
[6] |
S. Dipierro, E. Proietti Lippi and E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, arXiv: 2006.03850v1. |
[7] |
S. Dipierro, E. Proietti Lippi and E. Valdinoci, (Non)local logistic equations with Neumann conditions, arXiv: 2101.02315. |
[8] |
S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377–416.
doi: 10.4171/RMI/942. |
[9] |
E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139–174.
doi: 10.1007/BF01390270. |
[10] |
G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373–386. |
[11] |
A. Iannizzotto, S. Liu, K. Perera and M. Squassina, Existence results for fractional $p-$Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101–125.
doi: 10.1515/acv-2014-0024. |
[12] |
D. Motreanu, V. Motreanu and N, Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5. |
[13] |
D. Mugnai, Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3,379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition. NoDEA. Nonlinear Differ. Equ. Appl. 19 (2012), 299–301.
doi: 10.1007/s00030-011-0129-y. |
[14] |
D. Mugnai and E. Proietti Lippi, Neumann fractional $p-$Laplacian: eigenvalues and existence results, Nonlinear Anal., 188 (2019), 455–474.
doi: 10.1016/j.na.2019.06.015. |
[15] |
D. Mugnai and E. Proietti Lippi, Linking over cones for the Neumann fractional $p-$Laplacian, J. Differ. Equ., 271 (2021), 797–820.
doi: 10.1016/j.jde.2020.09.018. |
[16] |
K. Perera, On the existence of ground state solutions to critical growth problems nonresonant at zero, arXiv: 2106.12170. |
[17] |
K. Perera, R. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of $p-$Laplacian Type Operators, Math. Surveys Monogr. 161, 2010.
doi: 10.1090/surv/161. |
[18] |
R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. |
[19] |
Z. Vondra$\check{c}$ek, A probabilistic approach to a non-local quadratic form and its connection to the Neumann boundary condition problem, arXiv: 1909.10687. |
show all references
References:
[1] |
A. Audrito, J.-C. Felipe-Navarro and X. Ros-Oton, The Neumann problem for the fractional Laplacian: regularity up to the boundary, arXiv: 2006.10026. |
[2] |
B. Barrios, L. Montoro, I. Peral and F. Soria,
Neumann conditions for the higher order $s$-fractional Laplacian $(-\Delta)^s u$ with $s > 1$, Nonlinear Anal., 193 (2020), 111-368.
doi: 10.1016/j.na.2018.10.012. |
[3] |
K.-C. Chang and N. Ghoussoub,
The Conley index and the critical groups via an extension of Gromoll-Meyer theory, Topol. Methods Nonlinear Anal., 7 (1996), 77-93.
doi: 10.12775/TMNA.1996.003. |
[4] |
J.-N. Corvellec and Ha ntoute.,
Homotopical stability of isolated critical points of continuous functionals, Set-Valued Anal., 10 (2002), 143-164.
doi: 10.1023/A:1016544301594. |
[5] |
M. Degiovanni, S. Lancelotti and K. Perera, Nontrivial solutions of $p-$superlinear $p-$Laplacian problems via a cohomological local splitting, Commun. Contemp. Math., 12 (2010), 475–486.
doi: 10.1142/S0219199710003890. |
[6] |
S. Dipierro, E. Proietti Lippi and E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, arXiv: 2006.03850v1. |
[7] |
S. Dipierro, E. Proietti Lippi and E. Valdinoci, (Non)local logistic equations with Neumann conditions, arXiv: 2101.02315. |
[8] |
S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377–416.
doi: 10.4171/RMI/942. |
[9] |
E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139–174.
doi: 10.1007/BF01390270. |
[10] |
G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373–386. |
[11] |
A. Iannizzotto, S. Liu, K. Perera and M. Squassina, Existence results for fractional $p-$Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101–125.
doi: 10.1515/acv-2014-0024. |
[12] |
D. Motreanu, V. Motreanu and N, Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5. |
[13] |
D. Mugnai, Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3,379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition. NoDEA. Nonlinear Differ. Equ. Appl. 19 (2012), 299–301.
doi: 10.1007/s00030-011-0129-y. |
[14] |
D. Mugnai and E. Proietti Lippi, Neumann fractional $p-$Laplacian: eigenvalues and existence results, Nonlinear Anal., 188 (2019), 455–474.
doi: 10.1016/j.na.2019.06.015. |
[15] |
D. Mugnai and E. Proietti Lippi, Linking over cones for the Neumann fractional $p-$Laplacian, J. Differ. Equ., 271 (2021), 797–820.
doi: 10.1016/j.jde.2020.09.018. |
[16] |
K. Perera, On the existence of ground state solutions to critical growth problems nonresonant at zero, arXiv: 2106.12170. |
[17] |
K. Perera, R. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of $p-$Laplacian Type Operators, Math. Surveys Monogr. 161, 2010.
doi: 10.1090/surv/161. |
[18] |
R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. |
[19] |
Z. Vondra$\check{c}$ek, A probabilistic approach to a non-local quadratic form and its connection to the Neumann boundary condition problem, arXiv: 1909.10687. |
[1] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[2] |
Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130 |
[3] |
Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055 |
[4] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[5] |
Anna Mercaldo, Julio D. Rossi, Sergio Segura de León, Cristina Trombetti. Behaviour of $p$--Laplacian problems with Neumann boundary conditions when $p$ goes to 1. Communications on Pure and Applied Analysis, 2013, 12 (1) : 253-267. doi: 10.3934/cpaa.2013.12.253 |
[6] |
Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219 |
[7] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[8] |
Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 |
[9] |
CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004 |
[10] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[11] |
Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198 |
[12] |
Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175 |
[13] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[14] |
Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254 |
[15] |
Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143 |
[16] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[17] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[18] |
Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020 |
[19] |
Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267 |
[20] |
Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]