• Previous Article
    Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
  • CPAA Home
  • This Issue
  • Next Article
    Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence
doi: 10.3934/cpaa.2021178
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation

School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China

*Corresponding author. *This author is contributed equally as the first author

Received  June 2021 Revised  September 2021 Early access October 2021

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Funds for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.
The first author is supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Funds for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.

In this work, we study the inverse scattering transform of a nonlocal Hirota equation in detail, and obtain the corresponding soliton solutions formula. Starting from the Lax pair of this equation, we obtain the corresponding infinite number of conservation laws and some properties of scattering data. By analyzing the direct scattering problem, we get a critical symmetric relation which is different from the local equations. A novel left-right Riemann-Hilbert problem is proposed to develop the inverse scattering theory. The potentials are recovered and the pure soliton solutions formula is obtained when the reflection coefficients are zero. Based on the zero types of scattering data, nine types of soliton solutions are obtained and three typical types are described in detail. In addition, some dynamic behaviors are given to illustrate the soliton characteristics of the space symmetric nonlocal Hirota equation.

Citation: Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021178
References:
[1]

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013), 064105, 5pp. doi: 10.1103/PhysRevLett.110.064105.  Google Scholar

[2]

M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915-946.  doi: 10.1088/0951-7715/29/3/915.  Google Scholar

[3]

M. J. AblowitzB. FengX. Luo and Z. H. Musslimani, Inverse scattering transform for the nonlocal reverse space-time nonlinear schrödinger equation, Theor. Math. Phys., 196 (2018), 1241-1267.  doi: 10.1134/s0040577918090015.  Google Scholar

[4]

M. J. AblowitzX. Luo and Z. H. Musslimani, Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 59 (2018), 011501.  doi: 10.1063/1.5018294.  Google Scholar

[5]

G. P. Agrawal, Nonlinear Fiber Optics, Springer, Berlin, 2000. doi: 10.1007/3-540-46629-0_9.  Google Scholar

[6]

D. Anderson and M. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides, Phys. Rev. A, 27 (1983), 1393-1398.  doi: 10.1103/PhysRevA.27.1393.  Google Scholar

[7]

D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys., 46 (1967), 133-139.  doi: 10.1002/sapm1967461133.  Google Scholar

[8]

J. Cen, F. Correa and A. Fring, Integrable nonlocal Hirota equations, J. Math. Phys., 60 (2019), 081508, 18pp. doi: 10.1063/1.5013154.  Google Scholar

[9]

H. ChenY. Lee and C. Liu, Integrability of nonlinear hamiltonian systems by inverse scattering method, Phys. Scr., 20 (1979), 490-492.  doi: 10.1088/0031-8949/20/3-4/026.  Google Scholar

[10]

A. S. Fokas, Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 319-324.  doi: 10.1088/0951-7715/29/2/319.  Google Scholar

[11]

Martin V. Goldman, Strong turbulence of plasma waves, Rev. Mod. Phys., 56 (1984), 709-735.  doi: 10.1103/revmodphys.56.709.  Google Scholar

[12]

Ry ogo Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805-809.  doi: 10.1063/1.1666399.  Google Scholar

[13]

J. Ji and Z. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. Appl., 453 (2017), 973-984.  doi: 10.1016/j.jmaa.2017.04.042.  Google Scholar

[14]

Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron., 23 (1987), 510-524.  doi: 10.1109/JQE.1987.1073392.  Google Scholar

[15]

Z. Q. Li and S. F. Tian, A hierarchy of nonlocal nonlinear evolution equations and $\bar{\partial}$-dressing method, Appl. Math. Lett., 120 (2021), 107254, 8pp. doi: 10.1016/j.aml.2021.107254.  Google Scholar

[16]

M. Li and T. Xu, Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential, Phys. Rev. E, 91 (2015), 033202, 8pp. doi: 10.1103/PhysRevE.91.033202.  Google Scholar

[17]

W. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations, J. Math. Anal. Appl., 498 (2021), 124980, 13pp. doi: 10.1016/j.jmaa.2021.124980.  Google Scholar

[18]

W. PengS. TianT. Zhang and Y. Fang, Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation, Math. Methods Appl. Sci., 42 (2019), 6865-6877.  doi: 10.1002/mma.5792.  Google Scholar

[19] C. Rogers and W. K. Schief, Bäcklund and Darboux transformations : geometry and modern applications in soliton theory, Cambridge University Press, Cambridge, UK, 2002.   Google Scholar
[20]

A. K. Sarma, M. A. Miri, Z. H. Musslimani and D. N. Christodoulides, Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities, Phys. Rev. E, 89 (2014), 052918, 7pp. doi: 10.1103/PhysRevE.89.052918.  Google Scholar

[21]

N. Sasa and J. Satsuma, New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Jpn., 60 (1991), 409-417.  doi: 10.1143/JPSJ.60.409.  Google Scholar

[22]

C. SongD. Xiao and Z. Zhu, Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation, Commun. Nonlinear Sci. Num. Simul., 45 (2017), 13-28.  doi: 10.1016/j.cnsns.2016.09.013.  Google Scholar

[23]

Z. Zhou, Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation, Commun. Nonlinear Sci. Num. Simul., 62 (2018), 480-488.  doi: 10.1016/j.cnsns.2018.01.008.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110 (2013), 064105, 5pp. doi: 10.1103/PhysRevLett.110.064105.  Google Scholar

[2]

M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915-946.  doi: 10.1088/0951-7715/29/3/915.  Google Scholar

[3]

M. J. AblowitzB. FengX. Luo and Z. H. Musslimani, Inverse scattering transform for the nonlocal reverse space-time nonlinear schrödinger equation, Theor. Math. Phys., 196 (2018), 1241-1267.  doi: 10.1134/s0040577918090015.  Google Scholar

[4]

M. J. AblowitzX. Luo and Z. H. Musslimani, Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 59 (2018), 011501.  doi: 10.1063/1.5018294.  Google Scholar

[5]

G. P. Agrawal, Nonlinear Fiber Optics, Springer, Berlin, 2000. doi: 10.1007/3-540-46629-0_9.  Google Scholar

[6]

D. Anderson and M. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides, Phys. Rev. A, 27 (1983), 1393-1398.  doi: 10.1103/PhysRevA.27.1393.  Google Scholar

[7]

D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys., 46 (1967), 133-139.  doi: 10.1002/sapm1967461133.  Google Scholar

[8]

J. Cen, F. Correa and A. Fring, Integrable nonlocal Hirota equations, J. Math. Phys., 60 (2019), 081508, 18pp. doi: 10.1063/1.5013154.  Google Scholar

[9]

H. ChenY. Lee and C. Liu, Integrability of nonlinear hamiltonian systems by inverse scattering method, Phys. Scr., 20 (1979), 490-492.  doi: 10.1088/0031-8949/20/3-4/026.  Google Scholar

[10]

A. S. Fokas, Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 319-324.  doi: 10.1088/0951-7715/29/2/319.  Google Scholar

[11]

Martin V. Goldman, Strong turbulence of plasma waves, Rev. Mod. Phys., 56 (1984), 709-735.  doi: 10.1103/revmodphys.56.709.  Google Scholar

[12]

Ry ogo Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805-809.  doi: 10.1063/1.1666399.  Google Scholar

[13]

J. Ji and Z. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. Appl., 453 (2017), 973-984.  doi: 10.1016/j.jmaa.2017.04.042.  Google Scholar

[14]

Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron., 23 (1987), 510-524.  doi: 10.1109/JQE.1987.1073392.  Google Scholar

[15]

Z. Q. Li and S. F. Tian, A hierarchy of nonlocal nonlinear evolution equations and $\bar{\partial}$-dressing method, Appl. Math. Lett., 120 (2021), 107254, 8pp. doi: 10.1016/j.aml.2021.107254.  Google Scholar

[16]

M. Li and T. Xu, Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential, Phys. Rev. E, 91 (2015), 033202, 8pp. doi: 10.1103/PhysRevE.91.033202.  Google Scholar

[17]

W. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations, J. Math. Anal. Appl., 498 (2021), 124980, 13pp. doi: 10.1016/j.jmaa.2021.124980.  Google Scholar

[18]

W. PengS. TianT. Zhang and Y. Fang, Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation, Math. Methods Appl. Sci., 42 (2019), 6865-6877.  doi: 10.1002/mma.5792.  Google Scholar

[19] C. Rogers and W. K. Schief, Bäcklund and Darboux transformations : geometry and modern applications in soliton theory, Cambridge University Press, Cambridge, UK, 2002.   Google Scholar
[20]

A. K. Sarma, M. A. Miri, Z. H. Musslimani and D. N. Christodoulides, Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities, Phys. Rev. E, 89 (2014), 052918, 7pp. doi: 10.1103/PhysRevE.89.052918.  Google Scholar

[21]

N. Sasa and J. Satsuma, New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Jpn., 60 (1991), 409-417.  doi: 10.1143/JPSJ.60.409.  Google Scholar

[22]

C. SongD. Xiao and Z. Zhu, Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation, Commun. Nonlinear Sci. Num. Simul., 45 (2017), 13-28.  doi: 10.1016/j.cnsns.2016.09.013.  Google Scholar

[23]

Z. Zhou, Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation, Commun. Nonlinear Sci. Num. Simul., 62 (2018), 480-488.  doi: 10.1016/j.cnsns.2018.01.008.  Google Scholar

Figure 1.  The single-breather solution (7.15) with $ \eta_1 = 7, \overline{\eta}_1 = -2, \theta_1 = \frac{\pi}{2}, \overline{\theta}_1 = \frac{\pi}{5}, \alpha = 5, \beta = 1 $. $ (a,b,c) $ The local structure, density and intensity profiles of the single-soliton solution $ |q (x,t)|^2 $
Figure 2.  The two-soliton solution (7.19) with $ \lambda_1 = 1.1+0.8i, \overline{\lambda}_1 = 2-i, \theta_1 = \theta_2 = \overline{\theta}_1 = \overline{\theta}_2 = 2\pi, \alpha = 1, \beta = 1 $. $ (a,b,c) $ The local structure, density and intensity profiles with different time of the two-soliton solution $ |q (x,t)|^2 $
Figure 3.  The three-soliton solution (7.24) with $ \lambda_1 = 1.2i, \lambda_2 = 1.1+2i, \overline{\lambda}_1 = -i, \overline{\lambda}_2 = 0.8-i, \theta_j = \overline{\theta}_j = \pi, (1\leq j\leq3) \alpha = \beta = 1 $. $ (a,b,c) $ The local structure, density and intensity profiles with different time of the three-soliton solution $ |q (x,t)|^2 $
[1]

Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225

[2]

Wei-Kang Xun, Shou-Fu Tian, Tian-Tian Zhang. Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021259

[3]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[4]

Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127

[5]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[6]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[7]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[8]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[9]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[10]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[11]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[12]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[13]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[14]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i

[15]

Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415

[16]

Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421

[17]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[18]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[19]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[20]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (107)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]