doi: 10.3934/cpaa.2021180
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Subharmonic solutions of bounded coupled Hamiltonian systems with sublinear growth

1. 

School of Mathematical Sciences, Soochow University, Suzhou 215006, China

2. 

Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China

* Corresponding author

Received  April 2021 Revised  September 2021 Early access October 2021

Fund Project: This work is supported by the National Natural Science Foundation of China (No. 12071327, No. 11671287)

We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.

Citation: Fanfan Chen, Dingbian Qian, Xiying Sun, Yinyin Wu. Subharmonic solutions of bounded coupled Hamiltonian systems with sublinear growth. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021180
References:
[1]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular-Laplacian, J. Differ. Equ., 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[2]

A. Boscaggin and R. Ortega, Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc., 157 (2014), 279-296.  doi: 10.1017/S0305004114000310.  Google Scholar

[3]

A. Calamai and A. Sfecci, Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 1-17.  doi: 10.1007/s00030-016-0427-5.  Google Scholar

[4]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differ. Equ., 97 (1992), 328-378.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[5]

T. Ding and F. Zanolin, Subharmonic solutions of second order nonlinear equations: A time-map approach, Nonlinear Anal., 20 (1993), 509-532.  doi: 10.1016/0362-546X(93)90036-R.  Google Scholar

[6]

A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Differ. Equ., 200 (2004), 162-184.  doi: 10.1016/j.jde.2004.02.001.  Google Scholar

[7]

A. FondaM. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Adv. Nonlinear Anal., 5 (2016), 367-382.   Google Scholar

[8]

A. Fonda and P. Gidoni, An avoiding cones condition for the Poincaré-Birkhoff theorem, J. Differ. Equ., 262 (2017), 1064-1084.  doi: 10.1016/j.jde.2016.10.002.  Google Scholar

[9]

A. Fonda and M. Ramos, Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities, J. Differ. Equ., 109 (1994), 354-372.  doi: 10.1006/jdeq.1994.1055.  Google Scholar

[10]

A. FondaZ. Schneider and F. Zanolin, Periodic oscillations for a nonlinear suspension bridge model, J. Comput. Appl. Math., 52 (1994), 113-140.   Google Scholar

[11]

A. Fonda and A. Sfecci, Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete Contin. Dyn. Syst., 37 (2017), 297-301.  doi: 10.3934/dcds.2017059.  Google Scholar

[12]

A. Fonda and A. Sfecci, Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differ. Integral Equ., 25 (2012), 993-1010.   Google Scholar

[13]

A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differ. Equ., 260 (2016), 2150-2162.  doi: 10.1016/j.jde.2015.09.056.  Google Scholar

[14]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc, 140 (2012), 1331-1341.   Google Scholar

[15]

A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602.  doi: 10.1515/anona-2017-0040.  Google Scholar

[16]

A. Fonda and A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.  doi: 10.1016/j.anihpc.2016.04.002.  Google Scholar

[17]

M. Garcia-HuidobroR. Manásevich and F. Zanolin, Strongly nonlinear second-order ODEs with unilateral conditions, Differ. Integral Equ., 8 (1993), 1057-1078.   Google Scholar

[18]

P. Hartman, On boundary value problems for second order differential equations, J. Differ. Equ., 26 (1977), 37-53.  doi: 10.1016/0022-0396(77)90097-3.  Google Scholar

[19]

H. Jacobowitz, Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equ., 20 (1976), 37-52.  doi: 10.1016/0022-0396(76)90094-2.  Google Scholar

[20]

J. Mawhin, Resonance problems for some non-autonomous ordinary differential equations, in Stability and Bifurcation Theory for Non-Autonomous Differential Equations, Lecture Notes in Mathematics, 2065, Springer Verlag, 2013. doi: 10.1007/978-3-642-32906-7_3.  Google Scholar

[21]

J. Moser and E. Zehnder, Notes on Dynamical Systems, Courant Institute of Mathematical Sciences, New York University, 2005. doi: 10.1090/cln/012.  Google Scholar

[22]

D. QianL. Chen and X. Sun, Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equ., 258 (2015), 3088-3106.  doi: 10.1016/j.jde.2015.01.003.  Google Scholar

[23]

D. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.  doi: 10.1137/S003614100343771X.  Google Scholar

[24]

D. QianP. J. Torres and P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equ., 266 (2019), 4746-4768.  doi: 10.1016/j.jde.2018.10.010.  Google Scholar

[25]

C. Rebelo and F. Zanolin, Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349-2389.  doi: 10.1090/S0002-9947-96-01580-2.  Google Scholar

[26]

X. SunQ. LiuD. Qian and N. Zhao, Infinitely many subharmonic solutions for nonlinear equations with singular $\phi$-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 279-292.  doi: 10.3934/cpaa.20200015.  Google Scholar

show all references

References:
[1]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular-Laplacian, J. Differ. Equ., 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[2]

A. Boscaggin and R. Ortega, Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc., 157 (2014), 279-296.  doi: 10.1017/S0305004114000310.  Google Scholar

[3]

A. Calamai and A. Sfecci, Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 1-17.  doi: 10.1007/s00030-016-0427-5.  Google Scholar

[4]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differ. Equ., 97 (1992), 328-378.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[5]

T. Ding and F. Zanolin, Subharmonic solutions of second order nonlinear equations: A time-map approach, Nonlinear Anal., 20 (1993), 509-532.  doi: 10.1016/0362-546X(93)90036-R.  Google Scholar

[6]

A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Differ. Equ., 200 (2004), 162-184.  doi: 10.1016/j.jde.2004.02.001.  Google Scholar

[7]

A. FondaM. Garrione and P. Gidoni, Periodic perturbations of Hamiltonian systems, Adv. Nonlinear Anal., 5 (2016), 367-382.   Google Scholar

[8]

A. Fonda and P. Gidoni, An avoiding cones condition for the Poincaré-Birkhoff theorem, J. Differ. Equ., 262 (2017), 1064-1084.  doi: 10.1016/j.jde.2016.10.002.  Google Scholar

[9]

A. Fonda and M. Ramos, Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities, J. Differ. Equ., 109 (1994), 354-372.  doi: 10.1006/jdeq.1994.1055.  Google Scholar

[10]

A. FondaZ. Schneider and F. Zanolin, Periodic oscillations for a nonlinear suspension bridge model, J. Comput. Appl. Math., 52 (1994), 113-140.   Google Scholar

[11]

A. Fonda and A. Sfecci, Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete Contin. Dyn. Syst., 37 (2017), 297-301.  doi: 10.3934/dcds.2017059.  Google Scholar

[12]

A. Fonda and A. Sfecci, Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differ. Integral Equ., 25 (2012), 993-1010.   Google Scholar

[13]

A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differ. Equ., 260 (2016), 2150-2162.  doi: 10.1016/j.jde.2015.09.056.  Google Scholar

[14]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc, 140 (2012), 1331-1341.   Google Scholar

[15]

A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602.  doi: 10.1515/anona-2017-0040.  Google Scholar

[16]

A. Fonda and A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.  doi: 10.1016/j.anihpc.2016.04.002.  Google Scholar

[17]

M. Garcia-HuidobroR. Manásevich and F. Zanolin, Strongly nonlinear second-order ODEs with unilateral conditions, Differ. Integral Equ., 8 (1993), 1057-1078.   Google Scholar

[18]

P. Hartman, On boundary value problems for second order differential equations, J. Differ. Equ., 26 (1977), 37-53.  doi: 10.1016/0022-0396(77)90097-3.  Google Scholar

[19]

H. Jacobowitz, Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equ., 20 (1976), 37-52.  doi: 10.1016/0022-0396(76)90094-2.  Google Scholar

[20]

J. Mawhin, Resonance problems for some non-autonomous ordinary differential equations, in Stability and Bifurcation Theory for Non-Autonomous Differential Equations, Lecture Notes in Mathematics, 2065, Springer Verlag, 2013. doi: 10.1007/978-3-642-32906-7_3.  Google Scholar

[21]

J. Moser and E. Zehnder, Notes on Dynamical Systems, Courant Institute of Mathematical Sciences, New York University, 2005. doi: 10.1090/cln/012.  Google Scholar

[22]

D. QianL. Chen and X. Sun, Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equ., 258 (2015), 3088-3106.  doi: 10.1016/j.jde.2015.01.003.  Google Scholar

[23]

D. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.  doi: 10.1137/S003614100343771X.  Google Scholar

[24]

D. QianP. J. Torres and P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equ., 266 (2019), 4746-4768.  doi: 10.1016/j.jde.2018.10.010.  Google Scholar

[25]

C. Rebelo and F. Zanolin, Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349-2389.  doi: 10.1090/S0002-9947-96-01580-2.  Google Scholar

[26]

X. SunQ. LiuD. Qian and N. Zhao, Infinitely many subharmonic solutions for nonlinear equations with singular $\phi$-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 279-292.  doi: 10.3934/cpaa.20200015.  Google Scholar

Figure 1.  $ z_k(t)\in \mathcal{D}_{1} $ and $ z_k(t)\in\mathcal{D}_{1}\cup \mathcal{E}_{k, y} $
Figure 2.  $ z_k(t)\in \mathcal{D}_{2} $
[1]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

[2]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[3]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

[4]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic & Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[5]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[6]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[7]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028

[8]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[9]

Xiao-Fei Zhang, Fei Guo. Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1625-1642. doi: 10.3934/cpaa.2016005

[10]

Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021162

[11]

Robert J. Elliott, Tak Kuen Siu. Stochastic volatility with regime switching and uncertain noise: Filtering with sub-linear expectations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 59-81. doi: 10.3934/dcdsb.2017003

[12]

Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989

[13]

Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119

[14]

Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15

[15]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[16]

Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354

[17]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[18]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[19]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[20]

Xiangjin Xu. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 643-654. doi: 10.3934/dcdsb.2003.3.643

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (52)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]