doi: 10.3934/cpaa.2021183
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Variation and oscillation for harmonic operators in the inverse Gaussian setting

Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Sánchez, s/n, 38721 La Laguna (Sta. Cruz de Tenerife), Spain

* Corresponding Author

Received  March 2021 Revised  September 2021 Early access November 2021

Fund Project: This paper is partially supported by grant PID2019-106093GB-I00 from the Spanish Government

We prove variation and oscillation $ L^p $-inequalities associated with fractional derivatives of certain semigroups of operators and with the family of truncations of Riesz transforms in the inverse Gaussian setting. We also study these variational $ L^p $-inequalities in a Banach-valued context by considering Banach spaces with the UMD-property and whose martingale cotype is fewer than the variational exponent. We establish $ L^p $-boundedness properties for weighted difference involving the semigroups under consideration.

Citation: Víctor Almeida, Jorge J. Betancor. Variation and oscillation for harmonic operators in the inverse Gaussian setting. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021183
References:
[1]

H. AimarL. Forzani and R. Scotto, On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis, Trans. Amer. Math. Soc., 359 (2007), 2137-2154.  doi: 10.1090/S0002-9947-06-04100-6.  Google Scholar

[2]

M. A. AkcogluR. L. Jones and P. O. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math., 42 (1998), 154-177.   Google Scholar

[3]

J. J. Betancor, A. Castro and M. de León Contreras, The hardy-littlewood property and maximal operators associated with the inverse gauss measure, arXiv: 2010.01341. Google Scholar

[4]

J. J. BetancorA. J. CastroJ. CurbeloJ. C. Fariña and L. Rodríguez-Mesa, Square functions in the Hermite setting for functions with values in UMD spaces, Ann. Mat. Pura Appl., 193 (2014), 1397-1430.  doi: 10.1007/s10231-013-0335-9.  Google Scholar

[5]

J. J. BetancorR. Crescimbeni and J. L. Torrea, The $\rho$-variation of the heat semigroup in the Hermitian setting: behaviour in $L^\infty$, Proc. Edinb. Math. Soc., 54 (2011), 569-585.  doi: 10.1017/S0013091510000556.  Google Scholar

[6]

J. J. Betancor and L. Rodríguez, Higher order riesz transforms in the inverse gauss setting and UMD banach spaces, arXiv: 2011.11285. Google Scholar

[7]

O. Blasco and P. Villarroya, Transference of vector-valued multipliers on weighted $L^p$-spaces, Canad. J. Math., 65 (2013), 510-543.  doi: 10.4153/CJM-2012-041-0.  Google Scholar

[8]

J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 163-168.  doi: 10.1007/BF02384306.  Google Scholar

[9]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes \'Etudes Sci. Publ. Math., 69 (1989), 5–45.  Google Scholar

[10]

T. Bruno, Endpoint results for the Riesz transform of the Ornstein-Uhlenbeck operator, J. Fourier Anal. Appl., 25 (2019), 1609-1631.  doi: 10.1007/s00041-018-09648-8.  Google Scholar

[11]

T. Bruno, Singular integrals and Hardy type spaces for the inverse Gauss measure, J. Geom. Anal., 31 (2021), 6481-6528.  doi: 10.1007/s12220-020-00541-9.  Google Scholar

[12]

T. Bruno and P. Sjögren, On the Riesz transforms for the inverse Gauss measure, Ann. Fenn. Math., 46 (2021), 433-448.  doi: 10.5186/aasfm.2021.4609.  Google Scholar

[13]

D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser. Wadsworth, Belmont, CA, 1983, pp. 270–286.  Google Scholar

[14]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83.  doi: 10.1215/S0012-7094-00-10513-3.  Google Scholar

[15]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.  doi: 10.1090/S0002-9947-02-03189-6.  Google Scholar

[16]

Z. Chao and J. Torrea, Boundedness of differential transforms for heat semigroups generated by schrödinger operators, Cand. J. Math. (2020), 1–34. doi: 10.4153/S0008414X20000097.  Google Scholar

[17]

L. Deleaval and C. Kriegler, Maximal and q-variational hörmander functional calculus., Preprint, 2019. Google Scholar

[18]

Y. Do and M. Lacey, Weighted bounds for variational Fourier series, Studia Math., 211 (2012), 153-190.  doi: 10.4064/sm211-2-4.  Google Scholar

[19]

J. García-CuervaG. MauceriP. Sjögren and J. L. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck semigroup, J. Anal. Math., 78 (1999), 281-305.  doi: 10.1007/BF02791138.  Google Scholar

[20]

E. HarboureR. A. MacíasM. T. Menárguez and J. L. Torrea, Oscillation and variation for the Gaussian Riesz transforms and Poisson integral, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 85-104.  doi: 10.1017/S0308210500003772.  Google Scholar

[21]

E. HarboureJ. L. Torrea and B. Viviani, Vector-valued extensions of operators related to the Ornstein-Uhlenbeck semigroup, J. Anal. Math., 91 (2003), 1-29.  doi: 10.1007/BF02788780.  Google Scholar

[22]

G. HongW. Liu and T. Ma, Vector-valued $q$-variational inequalities for averaging operators and the Hilbert transform, Arch. Math. (Basel), 115 (2020), 423-433.  doi: 10.1007/s00013-020-01472-1.  Google Scholar

[23]

G. Hong and T. Ma, Vector valued $q$-variation for differential operators and semigroups I, Math. Z., 286 (2017), 89-120.  doi: 10.1007/s00209-016-1756-0.  Google Scholar

[24]

T. P. HytönenM. T. Lacey and C. Pérez, Sharp weighted bounds for the $q$-variation of singular integrals, Bull. Lond. Math. Soc., 45 (2013), 529-540.  doi: 10.1112/blms/bds114.  Google Scholar

[25]

Jr. Jodeit and M., Restrictions and extensions of Fourier multipliers, Studia Math., 34 (1970), 215-226.  doi: 10.4064/sm-34-2-215-226.  Google Scholar

[26]

R. L. JonesR. KaufmanJ. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Syst., 18 (1998), 889-935.  doi: 10.1017/S0143385798108349.  Google Scholar

[27]

R. L. Jones and K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Syst., 21 (2001), 1809-1829.  doi: 10.1017/S0143385701001869.  Google Scholar

[28]

R. L. JonesA. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.  doi: 10.1090/S0002-9947-08-04538-8.  Google Scholar

[29]

R. L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., 356 (2004), 4493-4518.  doi: 10.1090/S0002-9947-04-03397-5.  Google Scholar

[30]

C. Le Merdy and Q. Xu, Strong $q$-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble), 62 (2012), 2069–2097 (2013). doi: 10.5802/aif.2743.  Google Scholar

[31]

D. Lépingle, La variation d'ordre $p$ des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36 (1976), 295-316.  doi: 10.1007/BF00532696.  Google Scholar

[32]

T. MaJ. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 60 (2017), 1419-1442.  doi: 10.1007/s11425-016-9012-7.  Google Scholar

[33]

A. Mas and X. Tolsa, Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs, Proc. Lond. Math. Soc., 105 (2012), 49-86.  doi: 10.1112/plms/pdr061.  Google Scholar

[34]

T. MenárguezS. Pérez and F. Soria, The Mehler maximal function: a geometric proof of the weak type 1, J. London Math. Soc., 61 (2000), 846-856.  doi: 10.1112/S0024610700008723.  Google Scholar

[35]

B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc., 139 (1969), 243-260.  doi: 10.2307/1995317.  Google Scholar

[36]

R. OberlinA. SeegerT. TaoC. Thiele and J. Wright, A variation norm Carleson theorem, J. Eur. Math. Soc., 2 (2012), 421-464.  doi: 10.4171/JEMS/307.  Google Scholar

[37]

S. Pérez and F. Soria, Operators associated with the Ornstein-Uhlenbeck semigroup, J. London Math. Soc., 3 (2000), 857-871.  doi: 10.1112/S0024610700008917.  Google Scholar

[38]

G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math., 20 (1975), 326-350.  doi: 10.1007/BF02760337.  Google Scholar

[39]

G. Pisier and Q. H. Xu, The strong $p$-variation of martingales and orthogonal series, Probab. Theory Related Fields, 4 (1988), 497-514.  doi: 10.1007/BF00959613.  Google Scholar

[40]

J. Qian, The $p$-variation of partial sum processes and the empirical process, Ann. Probab., 3 (1998), 1370-1383.  doi: 10.1214/aop/1022855756.  Google Scholar

[41]

F. Salogni, Harmonic Bergman Spaces, Hardy-Type Spaces and Harmonic Analysis of a Symetric Diffusion Semigroup on $\mathbb R^n$, PhD thesis, Università degli Studi di Milano-Bicocca, 2013. Google Scholar

[42]

J. Teuwen, On the integral kernels of derivatives of the Ornstein-Uhlenbeck semigroupì, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 19 (2016), 1650030, 13 pp. doi: 10.1142/S0219025716500302.  Google Scholar

show all references

References:
[1]

H. AimarL. Forzani and R. Scotto, On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis, Trans. Amer. Math. Soc., 359 (2007), 2137-2154.  doi: 10.1090/S0002-9947-06-04100-6.  Google Scholar

[2]

M. A. AkcogluR. L. Jones and P. O. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math., 42 (1998), 154-177.   Google Scholar

[3]

J. J. Betancor, A. Castro and M. de León Contreras, The hardy-littlewood property and maximal operators associated with the inverse gauss measure, arXiv: 2010.01341. Google Scholar

[4]

J. J. BetancorA. J. CastroJ. CurbeloJ. C. Fariña and L. Rodríguez-Mesa, Square functions in the Hermite setting for functions with values in UMD spaces, Ann. Mat. Pura Appl., 193 (2014), 1397-1430.  doi: 10.1007/s10231-013-0335-9.  Google Scholar

[5]

J. J. BetancorR. Crescimbeni and J. L. Torrea, The $\rho$-variation of the heat semigroup in the Hermitian setting: behaviour in $L^\infty$, Proc. Edinb. Math. Soc., 54 (2011), 569-585.  doi: 10.1017/S0013091510000556.  Google Scholar

[6]

J. J. Betancor and L. Rodríguez, Higher order riesz transforms in the inverse gauss setting and UMD banach spaces, arXiv: 2011.11285. Google Scholar

[7]

O. Blasco and P. Villarroya, Transference of vector-valued multipliers on weighted $L^p$-spaces, Canad. J. Math., 65 (2013), 510-543.  doi: 10.4153/CJM-2012-041-0.  Google Scholar

[8]

J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 163-168.  doi: 10.1007/BF02384306.  Google Scholar

[9]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes \'Etudes Sci. Publ. Math., 69 (1989), 5–45.  Google Scholar

[10]

T. Bruno, Endpoint results for the Riesz transform of the Ornstein-Uhlenbeck operator, J. Fourier Anal. Appl., 25 (2019), 1609-1631.  doi: 10.1007/s00041-018-09648-8.  Google Scholar

[11]

T. Bruno, Singular integrals and Hardy type spaces for the inverse Gauss measure, J. Geom. Anal., 31 (2021), 6481-6528.  doi: 10.1007/s12220-020-00541-9.  Google Scholar

[12]

T. Bruno and P. Sjögren, On the Riesz transforms for the inverse Gauss measure, Ann. Fenn. Math., 46 (2021), 433-448.  doi: 10.5186/aasfm.2021.4609.  Google Scholar

[13]

D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser. Wadsworth, Belmont, CA, 1983, pp. 270–286.  Google Scholar

[14]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83.  doi: 10.1215/S0012-7094-00-10513-3.  Google Scholar

[15]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.  doi: 10.1090/S0002-9947-02-03189-6.  Google Scholar

[16]

Z. Chao and J. Torrea, Boundedness of differential transforms for heat semigroups generated by schrödinger operators, Cand. J. Math. (2020), 1–34. doi: 10.4153/S0008414X20000097.  Google Scholar

[17]

L. Deleaval and C. Kriegler, Maximal and q-variational hörmander functional calculus., Preprint, 2019. Google Scholar

[18]

Y. Do and M. Lacey, Weighted bounds for variational Fourier series, Studia Math., 211 (2012), 153-190.  doi: 10.4064/sm211-2-4.  Google Scholar

[19]

J. García-CuervaG. MauceriP. Sjögren and J. L. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck semigroup, J. Anal. Math., 78 (1999), 281-305.  doi: 10.1007/BF02791138.  Google Scholar

[20]

E. HarboureR. A. MacíasM. T. Menárguez and J. L. Torrea, Oscillation and variation for the Gaussian Riesz transforms and Poisson integral, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 85-104.  doi: 10.1017/S0308210500003772.  Google Scholar

[21]

E. HarboureJ. L. Torrea and B. Viviani, Vector-valued extensions of operators related to the Ornstein-Uhlenbeck semigroup, J. Anal. Math., 91 (2003), 1-29.  doi: 10.1007/BF02788780.  Google Scholar

[22]

G. HongW. Liu and T. Ma, Vector-valued $q$-variational inequalities for averaging operators and the Hilbert transform, Arch. Math. (Basel), 115 (2020), 423-433.  doi: 10.1007/s00013-020-01472-1.  Google Scholar

[23]

G. Hong and T. Ma, Vector valued $q$-variation for differential operators and semigroups I, Math. Z., 286 (2017), 89-120.  doi: 10.1007/s00209-016-1756-0.  Google Scholar

[24]

T. P. HytönenM. T. Lacey and C. Pérez, Sharp weighted bounds for the $q$-variation of singular integrals, Bull. Lond. Math. Soc., 45 (2013), 529-540.  doi: 10.1112/blms/bds114.  Google Scholar

[25]

Jr. Jodeit and M., Restrictions and extensions of Fourier multipliers, Studia Math., 34 (1970), 215-226.  doi: 10.4064/sm-34-2-215-226.  Google Scholar

[26]

R. L. JonesR. KaufmanJ. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Syst., 18 (1998), 889-935.  doi: 10.1017/S0143385798108349.  Google Scholar

[27]

R. L. Jones and K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Syst., 21 (2001), 1809-1829.  doi: 10.1017/S0143385701001869.  Google Scholar

[28]

R. L. JonesA. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.  doi: 10.1090/S0002-9947-08-04538-8.  Google Scholar

[29]

R. L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., 356 (2004), 4493-4518.  doi: 10.1090/S0002-9947-04-03397-5.  Google Scholar

[30]

C. Le Merdy and Q. Xu, Strong $q$-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble), 62 (2012), 2069–2097 (2013). doi: 10.5802/aif.2743.  Google Scholar

[31]

D. Lépingle, La variation d'ordre $p$ des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36 (1976), 295-316.  doi: 10.1007/BF00532696.  Google Scholar

[32]

T. MaJ. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 60 (2017), 1419-1442.  doi: 10.1007/s11425-016-9012-7.  Google Scholar

[33]

A. Mas and X. Tolsa, Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs, Proc. Lond. Math. Soc., 105 (2012), 49-86.  doi: 10.1112/plms/pdr061.  Google Scholar

[34]

T. MenárguezS. Pérez and F. Soria, The Mehler maximal function: a geometric proof of the weak type 1, J. London Math. Soc., 61 (2000), 846-856.  doi: 10.1112/S0024610700008723.  Google Scholar

[35]

B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc., 139 (1969), 243-260.  doi: 10.2307/1995317.  Google Scholar

[36]

R. OberlinA. SeegerT. TaoC. Thiele and J. Wright, A variation norm Carleson theorem, J. Eur. Math. Soc., 2 (2012), 421-464.  doi: 10.4171/JEMS/307.  Google Scholar

[37]

S. Pérez and F. Soria, Operators associated with the Ornstein-Uhlenbeck semigroup, J. London Math. Soc., 3 (2000), 857-871.  doi: 10.1112/S0024610700008917.  Google Scholar

[38]

G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math., 20 (1975), 326-350.  doi: 10.1007/BF02760337.  Google Scholar

[39]

G. Pisier and Q. H. Xu, The strong $p$-variation of martingales and orthogonal series, Probab. Theory Related Fields, 4 (1988), 497-514.  doi: 10.1007/BF00959613.  Google Scholar

[40]

J. Qian, The $p$-variation of partial sum processes and the empirical process, Ann. Probab., 3 (1998), 1370-1383.  doi: 10.1214/aop/1022855756.  Google Scholar

[41]

F. Salogni, Harmonic Bergman Spaces, Hardy-Type Spaces and Harmonic Analysis of a Symetric Diffusion Semigroup on $\mathbb R^n$, PhD thesis, Università degli Studi di Milano-Bicocca, 2013. Google Scholar

[42]

J. Teuwen, On the integral kernels of derivatives of the Ornstein-Uhlenbeck semigroupì, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 19 (2016), 1650030, 13 pp. doi: 10.1142/S0219025716500302.  Google Scholar

[1]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[2]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[3]

Leyu Hu, Wenxing Zhang, Xingju Cai, Deren Han. A parallel operator splitting algorithm for solving constrained total-variation retinex. Inverse Problems & Imaging, 2020, 14 (6) : 1135-1156. doi: 10.3934/ipi.2020058

[4]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[5]

Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3051-3066. doi: 10.3934/dcdsb.2018299

[6]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[7]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025

[8]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[9]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[10]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[11]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[12]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026

[13]

Pierre Gervais. A spectral study of the linearized Boltzmann operator in $ L^2 $-spaces with polynomial and Gaussian weights. Kinetic & Related Models, 2021, 14 (4) : 725-747. doi: 10.3934/krm.2021022

[14]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[15]

Bruno Sixou, Cyril Mory. Kullback-Leibler residual and regularization for inverse problems with noisy data and noisy operator. Inverse Problems & Imaging, 2019, 13 (5) : 1113-1137. doi: 10.3934/ipi.2019050

[16]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[17]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[18]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[19]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[20]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

2020 Impact Factor: 1.916

Article outline

[Back to Top]