• Previous Article
    A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications
  • CPAA Home
  • This Issue
  • Next Article
    Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure
doi: 10.3934/cpaa.2021184
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global well-posedness in a chemotaxis system with oxygen consumption

School of Mathematical Sciences, University of Electronic, Science and Technology of China, Chengdu, 611731, China

Received  May 2021 Revised  August 2021 Early access November 2021

Fund Project: This work is supported by the Applied Fundamental Research Program of Sichuan Province (no. 2020YJ0264)

Motivated by the studies of the hydrodynamics of the tethered bacteria Thiovulum majus in a liquid environment, we consider the following chemotaxis system
$ \begin{equation*} \left\{ \begin{split} & n_t = \Delta n-\nabla\cdot\left(n\chi(c)\nabla{c}\right)+nc, &x\in \Omega, t>0, \ & c_t = \Delta c-{\bf u}\cdot\nabla c-nc, &x\in \Omega, t>0\ \end{split} \right. \end{equation*} $
under homogeneous Neumann boundary conditions in a bounded convex domain
$ \Omega\subset \mathbb{R}^d(d\in\{2, 3\}) $
with smooth boundary. For any given fluid
$ {\bf u} $
, it is proved that if
$ d = 2 $
, the corresponding initial-boundary value problem admits a unique global classical solution which is uniformly bounded, while if
$ d = 3 $
, such solution still exists under the additional condition that
$ 0<\chi\leq \frac{1}{16\|c(\cdot, 0)\|_{L^\infty(\Omega)}} $
.
Citation: Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021184
References:
[1]

X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var., 55 (2016), 39 pp. doi: 10.1007/s00526-016-1027-2.  Google Scholar

[2]

M. ChaeK. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Commun. Partial Differ. Equ., 39 (2014), 1205-1235.  doi: 10.1080/03605302.2013.852224.  Google Scholar

[3]

R. DuanA. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Partial Differ. Equ., 35 (2010), 1635-1673.  doi: 10.1080/03605302.2010.497199.  Google Scholar

[4]

R. DuanX. Li and Z. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differ. Equ., 263 (2017), 6284-6316.  doi: 10.1016/j.jde.2017.07.015.  Google Scholar

[5]

T. Fenchel, Motility and chemosensory behaviour of the sulphur bacterium thiovulum majus, Microbiology, 140 (1994), 3109-3116.   Google Scholar

[6]

P. HeY. Wang and L. Zhao, A further study on a 3D chemotaxis-Stokes system with tensor-valued sensitivity, Appl. Math. Lett., 90 (2019), 23-29.  doi: 10.1016/j.aml.2018.09.019.  Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

J. Lighthill, Flagellar hydrodynamics: The John von Neumann Lecture, SIAM Rev., 18 (1976), 161-230.  doi: 10.1137/1018040.  Google Scholar

[9]

P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-353.  doi: 10.1007/BF00249679.  Google Scholar

[10]

A. Petroff and A. Libchaber, Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus, Proc. Natl. Acad. Sci. USA., 111 (2014), E537–E545. Google Scholar

[11]

Y. Peng and Z. Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28 (2018), 869-920.  doi: 10.1142/S0218202518500239.  Google Scholar

[12]

Y. Peng and Z. Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differ. Equ., 267 (2019), 1277-1321.  doi: 10.1016/j.jde.2019.02.007.  Google Scholar

[13]

I. TuvalL. CisnerosC. Dombrowski and et al., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA., 102 (2005), 2277-2282.   Google Scholar

[14]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[15]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[16]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equ., 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.  Google Scholar

[17]

Y. WangF. Pang and H. Li, Boundedness in a three-dimensional chemotaxis-Stokes system with tensor-valued sensitivity, Comput. Math. Appl., 71 (2016), 712-722.  doi: 10.1016/j.camwa.2015.12.026.  Google Scholar

[18]

Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equ., 259 (2015), 7578-7609.  doi: 10.1016/j.jde.2015.08.027.  Google Scholar

[19]

Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differ. Equ., 261 (2016), 4944-4973.  doi: 10.1016/j.jde.2016.07.010.  Google Scholar

[20]

Y. WangM. Winkler and Z. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 18 (2018), 421-466.  doi: 10.1109/tps.2017.2783887.  Google Scholar

[21]

Y. WangM. Winkler and Z. Xiang, The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system, Math. Z., 289 (2018), 71-108.  doi: 10.1007/s00209-017-1944-6.  Google Scholar

[22]

Y. Wang, M. Winkler and Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Calc. Var., 58 (2019), 40 pp. doi: 10.1007/s00526-019-1656-3.  Google Scholar

[23]

Y. WangM. Winkler and Z. Xiang, Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption, Sci. China Math., 64 (2021), 725-746.  doi: 10.1007/s11425-020-1708-0.  Google Scholar

[24]

Y. WangM. Winkler and Z. Xiang, Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary, Commun. Partial Differ. Equ., 46 (2021), 1058-1091.  doi: 10.1080/03605302.2020.1870236.  Google Scholar

[25]

M. Winkler, Global large-date solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[26]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[27]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. I. H. Poincaré-AN, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[29]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.  doi: 10.1002/mana.200810838.  Google Scholar

[30]

C. Wu and Z. Xiang, The small-convection limit in a two-dimensional Keller-Segel-Navier-Stokes system, J. Differ. Equ., 267 (2019), 938-978.  doi: 10.1016/j.jde.2019.01.027.  Google Scholar

[31]

C. Wu and Z. Xiang, Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions, Math. Models Methods Appl. Sci., 30 (2020), 1325-1374.  doi: 10.1142/S0218202520500244.  Google Scholar

show all references

References:
[1]

X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var., 55 (2016), 39 pp. doi: 10.1007/s00526-016-1027-2.  Google Scholar

[2]

M. ChaeK. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Commun. Partial Differ. Equ., 39 (2014), 1205-1235.  doi: 10.1080/03605302.2013.852224.  Google Scholar

[3]

R. DuanA. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Partial Differ. Equ., 35 (2010), 1635-1673.  doi: 10.1080/03605302.2010.497199.  Google Scholar

[4]

R. DuanX. Li and Z. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differ. Equ., 263 (2017), 6284-6316.  doi: 10.1016/j.jde.2017.07.015.  Google Scholar

[5]

T. Fenchel, Motility and chemosensory behaviour of the sulphur bacterium thiovulum majus, Microbiology, 140 (1994), 3109-3116.   Google Scholar

[6]

P. HeY. Wang and L. Zhao, A further study on a 3D chemotaxis-Stokes system with tensor-valued sensitivity, Appl. Math. Lett., 90 (2019), 23-29.  doi: 10.1016/j.aml.2018.09.019.  Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

J. Lighthill, Flagellar hydrodynamics: The John von Neumann Lecture, SIAM Rev., 18 (1976), 161-230.  doi: 10.1137/1018040.  Google Scholar

[9]

P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-353.  doi: 10.1007/BF00249679.  Google Scholar

[10]

A. Petroff and A. Libchaber, Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus, Proc. Natl. Acad. Sci. USA., 111 (2014), E537–E545. Google Scholar

[11]

Y. Peng and Z. Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28 (2018), 869-920.  doi: 10.1142/S0218202518500239.  Google Scholar

[12]

Y. Peng and Z. Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differ. Equ., 267 (2019), 1277-1321.  doi: 10.1016/j.jde.2019.02.007.  Google Scholar

[13]

I. TuvalL. CisnerosC. Dombrowski and et al., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA., 102 (2005), 2277-2282.   Google Scholar

[14]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[15]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[16]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equ., 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.  Google Scholar

[17]

Y. WangF. Pang and H. Li, Boundedness in a three-dimensional chemotaxis-Stokes system with tensor-valued sensitivity, Comput. Math. Appl., 71 (2016), 712-722.  doi: 10.1016/j.camwa.2015.12.026.  Google Scholar

[18]

Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equ., 259 (2015), 7578-7609.  doi: 10.1016/j.jde.2015.08.027.  Google Scholar

[19]

Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differ. Equ., 261 (2016), 4944-4973.  doi: 10.1016/j.jde.2016.07.010.  Google Scholar

[20]

Y. WangM. Winkler and Z. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 18 (2018), 421-466.  doi: 10.1109/tps.2017.2783887.  Google Scholar

[21]

Y. WangM. Winkler and Z. Xiang, The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system, Math. Z., 289 (2018), 71-108.  doi: 10.1007/s00209-017-1944-6.  Google Scholar

[22]

Y. Wang, M. Winkler and Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Calc. Var., 58 (2019), 40 pp. doi: 10.1007/s00526-019-1656-3.  Google Scholar

[23]

Y. WangM. Winkler and Z. Xiang, Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption, Sci. China Math., 64 (2021), 725-746.  doi: 10.1007/s11425-020-1708-0.  Google Scholar

[24]

Y. WangM. Winkler and Z. Xiang, Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary, Commun. Partial Differ. Equ., 46 (2021), 1058-1091.  doi: 10.1080/03605302.2020.1870236.  Google Scholar

[25]

M. Winkler, Global large-date solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[26]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[27]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. I. H. Poincaré-AN, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[29]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.  doi: 10.1002/mana.200810838.  Google Scholar

[30]

C. Wu and Z. Xiang, The small-convection limit in a two-dimensional Keller-Segel-Navier-Stokes system, J. Differ. Equ., 267 (2019), 938-978.  doi: 10.1016/j.jde.2019.01.027.  Google Scholar

[31]

C. Wu and Z. Xiang, Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions, Math. Models Methods Appl. Sci., 30 (2020), 1325-1374.  doi: 10.1142/S0218202520500244.  Google Scholar

[1]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[2]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[3]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[4]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[5]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[6]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[7]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

[8]

Jiashan Zheng, Yifu Wang. A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 669-686. doi: 10.3934/dcdsb.2017032

[9]

Langhao Zhou, Liangwei Wang, Chunhua Jin. Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021122

[10]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[11]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[12]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[13]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[14]

Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2399-2416. doi: 10.3934/dcdss.2020403

[15]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[16]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[17]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[18]

Qichun Wang, Chik How Tan, Pantelimon Stănică. Concatenations of the hidden weighted bit function and their cryptographic properties. Advances in Mathematics of Communications, 2014, 8 (2) : 153-165. doi: 10.3934/amc.2014.8.153

[19]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

[20]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

2020 Impact Factor: 1.916

Article outline

[Back to Top]