doi: 10.3934/cpaa.2021185
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  June 2021 Early access November 2021

Fund Project: This research was partially supported by National Natural Science Foundation of China (Nos. 11901474, 12071359), the Chongqing Talent Plan for Young Topnotch Talents (No. CQYC202005074), and the Innovation Support Program for Chongqing Overseas Returnees (No. cx2020082)

We consider an initial boundary value problem of three-dimensional (3D) nonhomogeneous magneto-micropolar fluid equations in a bounded simply connected smooth domain with homogeneous Dirichlet boundary conditions for the velocity and micro-rotational velocity and Navier-slip boundary condition for the magnetic field. We prove the global existence and exponential decay of strong solutions provided that some smallness condition holds true. Note that although the system degenerates near vacuum, there is no need to require compatibility conditions for the initial data via time weighted techniques.

Citation: Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021185
References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

H. Beir$\tilde{a}$o da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^{p}$ theory, J. Math. Fluid Mech., 12 (2010), 397-411.  doi: 10.1007/s00021-009-0295-4.  Google Scholar

[3]

L. C. Berselli and S. Spirito, On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains, Commun. Math. Phys., 316 (2012), 171-198.  doi: 10.1007/s00220-012-1581-1.  Google Scholar

[4]

J. L. BoldriniM. A. Rojas-Medar and and E. Fernández-Cara, Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., 82 (2003), 1499-1525.  doi: 10.1016/j.matpur.2003.09.005.  Google Scholar

[5] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013.  doi: 10.1007/978-1-4614-5975-0.  Google Scholar
[6]

P. Braz e SilvaF. W. CruzM. Loayza and M. A. Rojas-Medar, Global unique solvability of nonhomogeneous asymmetric fluids: A Lagrangian approach, J. Differ. Equ., 269 (2020), 1319-1348.  doi: 10.1016/j.jde.2020.01.001.  Google Scholar

[7]

P. Braz e SilvaF. W. Cruz and M. A. Rojas-Medar, Vanishing viscosity for nonhomogeneous asymmetric fluids in $\mathbb{R}^3$: the $L^2$ case, J. Math. Anal. Appl., 420 (2014), 207-221.  doi: 10.1016/j.jmaa.2014.05.060.  Google Scholar

[8]

P. Braz e SilvaF. W. Cruz and M. A. Rojas-Medar, Semi-strong and strong solutions for variable density asymmetric fluids in unbounded domains, Math. Methods Appl. Sci., 40 (2017), 757-774.  doi: 10.1002/mma.4006.  Google Scholar

[9]

P. Braz e Silva, F. W. Cruz and M. A. Rojas-Medar, Global strong solutions for variable density incompressible asymmetric fluids in thin domains, Nonlinear Anal. Real World Appl., 55 (2020), 103125, 14 pp. doi: 10.1016/j.nonrwa.2020.103125.  Google Scholar

[10]

P. Braz e SilvaF. W. CruzM. A. Rojas-Medar and E. G. Santos, Weak solutions with improved regularity for the nonhomogeneous asymmetric fluids equations with vacuum, J. Math. Anal. Appl., 473 (2019), 567-586.  doi: 10.1016/j.jmaa.2018.12.075.  Google Scholar

[11]

P. Braz e SilvaE. Fernández-Cara and M. A. Rojas-Medar, Vanishing viscosity for non-homogeneous asymmetric fluids in $\mathbb{R}^3$, J. Math. Anal. Appl., 332 (2007), 833-845.  doi: 10.1016/j.jmaa.2006.10.066.  Google Scholar

[12]

P. Braz e Silva and E. G. Santos, Global weak solutions for variable density asymmetric incompressible fluids, J. Math. Anal. Appl., 387 (2012), 953-969.  doi: 10.1016/j.jmaa.2011.10.015.  Google Scholar

[13]

F. W. Cruz and P. Braz e Silva, Error estimates for spectral semi-Galerkin approximations of incompressible asymmetric fluids with variable density, J. Math. Fluid Mech., 21 (2019), 27 pp. doi: 10.1007/s00021-019-0405-x.  Google Scholar

[14]

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.   Google Scholar
[16]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[17] P. L. Lions, Mathematical Topics in Fluid Mechanics, Oxford University Press, Oxford, 1996.   Google Scholar
[18]

G. Łukaszewicz, On nonstationary flows of incompressible asymmetric fluids, Math. Methods Appl. Sci., 13 (1990), 219-232.  doi: 10.1002/mma.1670130304.  Google Scholar

[19]

G. Łukaszewicz, Micropolar Fluids, Birkhäuser, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[20] A. Lunardi, Interpolation Theory, 3rd edition, Edizioni della Normale, Pisa, 2018.  doi: 10.1007/978-88-7642-638-4.  Google Scholar
[21] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 2008.   Google Scholar
[22]

T. Tang and J. Sun, Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 6017-6026.  doi: 10.3934/dcdsb.2020377.  Google Scholar

[23]

G. Wu and X. Zhong, Global strong solution and exponential decay of 3D nonhomogeneous asymmetric fluid equations with vacuum, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 1428-1444.  doi: 10.1007/s10473-021-0503-8.  Google Scholar

[24]

Z. Ye, Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6725-6743.  doi: 10.3934/dcdsb.2019164.  Google Scholar

[25]

P. Zhang and M. Zhu, Global regularity of 3D nonhomogeneous incompressible magneto-micropolar system with the density-dependent viscosity, Comput. Math. Appl., 76 (2018), 2304-2314.  doi: 10.1016/j.camwa.2018.08.041.  Google Scholar

[26]

P. Zhang and M. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13-34.  doi: 10.1007/s10440-018-0202-1.  Google Scholar

show all references

References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Internat. J. Engrg. Sci., 12 (1974), 657-663.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

H. Beir$\tilde{a}$o da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^{p}$ theory, J. Math. Fluid Mech., 12 (2010), 397-411.  doi: 10.1007/s00021-009-0295-4.  Google Scholar

[3]

L. C. Berselli and S. Spirito, On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains, Commun. Math. Phys., 316 (2012), 171-198.  doi: 10.1007/s00220-012-1581-1.  Google Scholar

[4]

J. L. BoldriniM. A. Rojas-Medar and and E. Fernández-Cara, Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., 82 (2003), 1499-1525.  doi: 10.1016/j.matpur.2003.09.005.  Google Scholar

[5] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013.  doi: 10.1007/978-1-4614-5975-0.  Google Scholar
[6]

P. Braz e SilvaF. W. CruzM. Loayza and M. A. Rojas-Medar, Global unique solvability of nonhomogeneous asymmetric fluids: A Lagrangian approach, J. Differ. Equ., 269 (2020), 1319-1348.  doi: 10.1016/j.jde.2020.01.001.  Google Scholar

[7]

P. Braz e SilvaF. W. Cruz and M. A. Rojas-Medar, Vanishing viscosity for nonhomogeneous asymmetric fluids in $\mathbb{R}^3$: the $L^2$ case, J. Math. Anal. Appl., 420 (2014), 207-221.  doi: 10.1016/j.jmaa.2014.05.060.  Google Scholar

[8]

P. Braz e SilvaF. W. Cruz and M. A. Rojas-Medar, Semi-strong and strong solutions for variable density asymmetric fluids in unbounded domains, Math. Methods Appl. Sci., 40 (2017), 757-774.  doi: 10.1002/mma.4006.  Google Scholar

[9]

P. Braz e Silva, F. W. Cruz and M. A. Rojas-Medar, Global strong solutions for variable density incompressible asymmetric fluids in thin domains, Nonlinear Anal. Real World Appl., 55 (2020), 103125, 14 pp. doi: 10.1016/j.nonrwa.2020.103125.  Google Scholar

[10]

P. Braz e SilvaF. W. CruzM. A. Rojas-Medar and E. G. Santos, Weak solutions with improved regularity for the nonhomogeneous asymmetric fluids equations with vacuum, J. Math. Anal. Appl., 473 (2019), 567-586.  doi: 10.1016/j.jmaa.2018.12.075.  Google Scholar

[11]

P. Braz e SilvaE. Fernández-Cara and M. A. Rojas-Medar, Vanishing viscosity for non-homogeneous asymmetric fluids in $\mathbb{R}^3$, J. Math. Anal. Appl., 332 (2007), 833-845.  doi: 10.1016/j.jmaa.2006.10.066.  Google Scholar

[12]

P. Braz e Silva and E. G. Santos, Global weak solutions for variable density asymmetric incompressible fluids, J. Math. Anal. Appl., 387 (2012), 953-969.  doi: 10.1016/j.jmaa.2011.10.015.  Google Scholar

[13]

F. W. Cruz and P. Braz e Silva, Error estimates for spectral semi-Galerkin approximations of incompressible asymmetric fluids with variable density, J. Math. Fluid Mech., 21 (2019), 27 pp. doi: 10.1007/s00021-019-0405-x.  Google Scholar

[14]

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.   Google Scholar
[16]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[17] P. L. Lions, Mathematical Topics in Fluid Mechanics, Oxford University Press, Oxford, 1996.   Google Scholar
[18]

G. Łukaszewicz, On nonstationary flows of incompressible asymmetric fluids, Math. Methods Appl. Sci., 13 (1990), 219-232.  doi: 10.1002/mma.1670130304.  Google Scholar

[19]

G. Łukaszewicz, Micropolar Fluids, Birkhäuser, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[20] A. Lunardi, Interpolation Theory, 3rd edition, Edizioni della Normale, Pisa, 2018.  doi: 10.1007/978-88-7642-638-4.  Google Scholar
[21] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 2008.   Google Scholar
[22]

T. Tang and J. Sun, Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 6017-6026.  doi: 10.3934/dcdsb.2020377.  Google Scholar

[23]

G. Wu and X. Zhong, Global strong solution and exponential decay of 3D nonhomogeneous asymmetric fluid equations with vacuum, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 1428-1444.  doi: 10.1007/s10473-021-0503-8.  Google Scholar

[24]

Z. Ye, Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6725-6743.  doi: 10.3934/dcdsb.2019164.  Google Scholar

[25]

P. Zhang and M. Zhu, Global regularity of 3D nonhomogeneous incompressible magneto-micropolar system with the density-dependent viscosity, Comput. Math. Appl., 76 (2018), 2304-2314.  doi: 10.1016/j.camwa.2018.08.041.  Google Scholar

[26]

P. Zhang and M. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13-34.  doi: 10.1007/s10440-018-0202-1.  Google Scholar

[1]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6017-6026. doi: 10.3934/dcdsb.2020377

[2]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6339-6357. doi: 10.3934/dcdsb.2021021

[3]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[4]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[5]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[6]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[7]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[8]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[9]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[10]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[11]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[12]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[13]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[14]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[15]

Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6725-6743. doi: 10.3934/dcdsb.2019164

[16]

Xumin Gu. Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. Communications on Pure & Applied Analysis, 2019, 18 (2) : 569-602. doi: 10.3934/cpaa.2019029

[17]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[18]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[19]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[20]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (63)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]