We examine the following degenerate elliptic system:
$ -\Delta_{s} u \! = \! v^p, \quad -\Delta_{s} v\! = \! u^\theta, \;\; u, v>0 \;\;\mbox{in }\; \mathbb{R}^N = \mathbb{R}^{N_1}\times \mathbb{R}^{N_2}, \quad\mbox{where}\;\; s \geq 0\;\; \mbox{and} \;\;p, \theta \!>\!0. $
We prove that the system has no stable solution provided $ p, \theta >0 $ and $ N_s: = N_1+(1+s)N_2< 2 + \alpha + \beta, $ where
$ \alpha = \frac{2(p+1)}{p\theta - 1} \quad\mbox{and} \quad \beta = \frac{2(\theta +1)}{p\theta - 1}. $
This result is an extension of some results in [15]. In particular, we establish a new integral estimate for $ u $ and $ v $ (see Proposition 1.1), which is crucial to deal with the case $ 0 < p < 1. $
Citation: |
[1] |
I. Birindelli, I. Capuzzo Dolcetta and A. Cutr$\grave{\rm{l}}$, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308.
doi: 10.1016/S0294-1449(97)80138-2.![]() ![]() ![]() |
[2] |
I. Birindelli and J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Commun. Partial Differ. Equ., 26 (1999), 1875-1890.
doi: 10.1080/03605309908821485.![]() ![]() ![]() |
[3] |
J. Busca and R. Manasevich, A Liouville-type theorem for Lane-Emden systems, Indiana Uni. Math. J., 51 (2002), 37-52.
doi: 10.1512/iumj.2002.51.2160.![]() ![]() ![]() |
[4] |
C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems, Nonlinearity, 26 (2013), 2357-2371.
doi: 10.1088/0951-7715/26/8/2357.![]() ![]() ![]() |
[5] |
A. T. Duong and Q. H. Phan, Liouville type theorem for nonlinear elliptic system involving Grushin operator, J. Math. Anal. Appl., 454 (2017), 785-801.
doi: 10.1016/j.jmaa.2017.05.029.![]() ![]() ![]() |
[6] |
B. Franchi and E. Lanconelli., Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Rend. Sem. Mat. Univ. Politec. Torino. 1983,105–114, conference on linear partial and pseudodifferential operators, Torino, 1982.
![]() ![]() |
[7] |
H. Hajlaoui, A. Harrabi and F. Mtiri, Liouville theorems for stable solutions of the weighted Lane-Emden system, Discrete Contin. Dyn. Syst., 37 (2017), 265-279.
doi: 10.3934/dcds.2017011.![]() ![]() ![]() |
[8] |
L. Hu, Liouville type results for semi-stable solutions of the weighted Lane-Emden system, J. Math. Anal. Appl., 432 (2015), 429-440.
doi: 10.1016/j.jmaa.2015.06.032.![]() ![]() ![]() |
[9] |
A. E. Kogoj and E. Lanconelli, Liouville theorem for X-elliptic operators, Nonlinear Anal., 70 (2009), 2974-2985.
doi: 10.1016/j.na.2008.12.029.![]() ![]() ![]() |
[10] |
A. E. Kogoj and E. Lanconelli, On semilinear $\Delta_{\lambda}-$ Laplace equation, Nonlinear Anal., 75 (2012), 4637-4649.
doi: 10.1016/j.na.2011.10.007.![]() ![]() ![]() |
[11] |
A. E. Kogoj and E. Lanconelli, Linear and semilinear problems involving $\Delta_{\lambda}-$ Laplacians, J. Differ. Equ., 25 (2018), 167-178.
![]() ![]() |
[12] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in RN, Differ. Integral Equ., 9 (1996), 465-479.
![]() ![]() |
[13] |
E. Mitidieri, A Rellich type identity and applications, Commun. Partial Differ. Equ., 18 (1993), 125-151.
doi: 10.1080/03605309308820923.![]() ![]() ![]() |
[14] |
D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc., 12 (2010), 611-654.
doi: 10.4171/JEMS/210.![]() ![]() ![]() |
[15] |
F. Mtiri and D. Ye, Liouville theorems for stable at infinity solutions of Lane-Emden system, Nonlinearity, 32 (2019), 910-926.
doi: 10.1088/1361-6544/aaf078.![]() ![]() ![]() |
[16] |
F. Mtiri, On the Classification of Solutions to a Weighted Elliptic System Involving the Grushin Operator, Acta Appl. Math., 174 (2021), 21 pp.
doi: 10.1007/s10440-021-00425-2.![]() ![]() ![]() |
[17] |
M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.
doi: 10.1112/S0024609305004248.![]() ![]() ![]() |
[18] |
L. Negro and G. Metafune and C. Spina, $L^{P}$ estimates for Baouendi-Grushin operator, arXiv: 1907.10439v1.
![]() |
[19] |
P. Polá$\check{c}$ik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8.![]() ![]() ![]() |
[20] |
J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 369-380.
![]() ![]() |
[21] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equ., 9 (1996), 635-653.
![]() ![]() |
[22] |
M. A. S. Souto, A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems, Differ. Int. Equ, 8 (1995), 1245-1258.
![]() ![]() |
[23] |
P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014.![]() ![]() ![]() |
[24] |
R. C. A. M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal., 116 (1992), 375-398.
doi: 10.1007/BF00375674.![]() ![]() ![]() |
[25] |
X. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 12 pp.
doi: 10.1142/S0219199714500503.![]() ![]() ![]() |