• Previous Article
    Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system
  • CPAA Home
  • This Issue
  • Next Article
    Liouville type theorems for stable solutions of elliptic system involving the Grushin operator
February  2022, 21(2): 555-566. doi: 10.3934/cpaa.2021188

Wave breaking phenomena and global existence for the weakly dissipative generalized Camassa-Holm equation

1. 

School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, China

2. 

School of Mathematics and Statistics, Hexi University, Zhangye 734000, China

* Corresponding author

Received  July 2021 Revised  September 2021 Published  February 2022 Early access  November 2021

Fund Project: This work is partially supported by NSFC Grants (nos. 12071065 and 11871140) and the National Key Research and Development Program of China (nos. 2020YFA0713602 and 2020YFC1808301)

In this paper, we mainly study several problems on the weakly dissipative generalized Camassa-Holm equation. We first establish the local well-posedness of solutions by Kato's semigroup theory. We then derive the necessary and sufficient condition of the blow-up of solutions and a criteria to guarantee occurrence of wave breaking. Moreover, when the solution blows up, we obtain the precise blow-up rate. We finally show that the equation has a unique global solution provided the momentum density associated with their initial datum satisfies appropriate sign conditions.

Citation: Yonghui Zhou, Shuguan Ji. Wave breaking phenomena and global existence for the weakly dissipative generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2022, 21 (2) : 555-566. doi: 10.3934/cpaa.2021188
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.

[2]

R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.

[3]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 18 (1998), 229-243.  doi: 10.1007/BF02392586.

[4]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51 (1998), 475-504.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

[5]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.

[6]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.  doi: 10.1007/PL00004793.

[7]

A. Constantin and W. A. Strauss, Stability of peakons, Commun. Pure Appl. Math., 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[8]

A. Constantin and L. Molinet, The initial value problem for a generalized Boussinesq equation, Differ. Integral Equ., 15 (2002), 1061-1072. 

[9]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981), 47-66.  doi: 10.1016/0167-2789(81)90004-X.

[10]

I. L. FreireN. S. FilhoL. C. Souza and C. E. Toffoli, Invariants and wave breaking analysis of a Camassa-Holm type equation with quadratic and cubic non-linearities, J. Differ. Equ., 269 (2020), 56-77.  doi: 10.1016/j.jde.2020.04.041.

[11]

J. M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Differ. Equ., 74 (1988), 369-390.  doi: 10.1016/0022-0396(88)90010-1.

[12]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.

[13]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Math, Springer, Berlin, 1975. doi: 10.1007/BFB0067080.

[14]

T. Kato and G. Ponce, Commutator estimate and the Eular and Navier-Stokes equations, Commun. Pure. Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[15]

E. Ott and R. N. Sudan, Damping of solitary waves, Phys. Fluids, 13 (1970), 1432-1434.  doi: 10.1063/1.1693097.

[16]

E. Wahlén, Global existence of weak solutions to the Camassa-Holm equation, Int. Math. Res. Not., 2006 (2006), 1-12.  doi: 10.1155/IMRN/2006/28976.

[17]

S. Wu and Z. Yin, Global existence and blow up phenomena for the weakly disspative Camassa-Holm equation, J. Differ. Equ., 246 (2009), 4309-4321.  doi: 10.1016/j.jde.2008.12.008.

[18]

X. Wu and B. Guo, The Cauchy problem of the modified CH and DP equations, IMA J. Appl. Math., 80 (2015), 906-930.  doi: 10.1093/imamat/hxu032.

[19]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Commun. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

[20]

Z. Yin, On the Blow-up scenario for the generalized Camassa-Holm equation, Commun. Partial Differ. Equ., 29 (2004), 867-877.  doi: 10.1081/PDE-120037334.

[21]

Z. Yin, Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation, Commun. Pure Appl. Anal., 3 (2004), 501-508.  doi: 10.3934/cpaa.2004.3.501.

[22]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation, Nonlinear Anal., 66 (2007), 460-471.  doi: 10.1016/j.na.2005.11.040.

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.

[2]

R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.

[3]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 18 (1998), 229-243.  doi: 10.1007/BF02392586.

[4]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51 (1998), 475-504.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

[5]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun. Math. Phys., 211 (2000), 45-61.  doi: 10.1007/s002200050801.

[6]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.  doi: 10.1007/PL00004793.

[7]

A. Constantin and W. A. Strauss, Stability of peakons, Commun. Pure Appl. Math., 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[8]

A. Constantin and L. Molinet, The initial value problem for a generalized Boussinesq equation, Differ. Integral Equ., 15 (2002), 1061-1072. 

[9]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981), 47-66.  doi: 10.1016/0167-2789(81)90004-X.

[10]

I. L. FreireN. S. FilhoL. C. Souza and C. E. Toffoli, Invariants and wave breaking analysis of a Camassa-Holm type equation with quadratic and cubic non-linearities, J. Differ. Equ., 269 (2020), 56-77.  doi: 10.1016/j.jde.2020.04.041.

[11]

J. M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Differ. Equ., 74 (1988), 369-390.  doi: 10.1016/0022-0396(88)90010-1.

[12]

Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.

[13]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Math, Springer, Berlin, 1975. doi: 10.1007/BFB0067080.

[14]

T. Kato and G. Ponce, Commutator estimate and the Eular and Navier-Stokes equations, Commun. Pure. Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[15]

E. Ott and R. N. Sudan, Damping of solitary waves, Phys. Fluids, 13 (1970), 1432-1434.  doi: 10.1063/1.1693097.

[16]

E. Wahlén, Global existence of weak solutions to the Camassa-Holm equation, Int. Math. Res. Not., 2006 (2006), 1-12.  doi: 10.1155/IMRN/2006/28976.

[17]

S. Wu and Z. Yin, Global existence and blow up phenomena for the weakly disspative Camassa-Holm equation, J. Differ. Equ., 246 (2009), 4309-4321.  doi: 10.1016/j.jde.2008.12.008.

[18]

X. Wu and B. Guo, The Cauchy problem of the modified CH and DP equations, IMA J. Appl. Math., 80 (2015), 906-930.  doi: 10.1093/imamat/hxu032.

[19]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Commun. Pure Appl. Math., 53 (2000), 1411-1433.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

[20]

Z. Yin, On the Blow-up scenario for the generalized Camassa-Holm equation, Commun. Partial Differ. Equ., 29 (2004), 867-877.  doi: 10.1081/PDE-120037334.

[21]

Z. Yin, Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation, Commun. Pure Appl. Anal., 3 (2004), 501-508.  doi: 10.3934/cpaa.2004.3.501.

[22]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation, Nonlinear Anal., 66 (2007), 460-471.  doi: 10.1016/j.na.2005.11.040.

[1]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[2]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[3]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[4]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[5]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[6]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[7]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[8]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[9]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[10]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[11]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[12]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[13]

Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166

[14]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[15]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[16]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[17]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[18]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[19]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations and Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[20]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (218)
  • HTML views (175)
  • Cited by (0)

Other articles
by authors

[Back to Top]