In this paper, we investigate a system of pseudoparabolic equations with Robin-Dirichlet conditions. First, the local existence and uniqueness of a weak solution are established by applying the Faedo-Galerkin method. Next, for suitable initial datum, we obtain the global existence and decay of weak solutions. Finally, using concavity method, we prove blow-up results for solutions when the initial energy is nonnegative or negative, then we establish here the lifespan for the equations via finding the upper bound and the lower bound for the blow-up times.
Citation: |
[1] |
Ch. J. Amick, J. L. Bona and M. E. Schonbeck, Decay of solutions of some nonlinear wave equations, J. Differ. Equ., 81 (1989), 1-49.
doi: 10.1016/0022-0396(89)90176-9.![]() ![]() ![]() |
[2] |
G. Barenblat, I. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
![]() |
[3] |
J. L. Bona and V. A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.
doi: 10.1016/0022-247X(80)90098-0.![]() ![]() ![]() |
[4] |
A. Bouziani, Solvability of nonlinear pseudoparabolic equation with a nonlocal boundary condition, Nonlinear Anal., 55 (2003), 883-904.
doi: 10.1016/j.na.2003.07.011.![]() ![]() ![]() |
[5] |
Y. Cao, J. Yin and C. Wang, Cauchy problems of semilinear pseudoparabolic equations, J. Differ. Equ., 246 (2009), 4568-4590.
doi: 10.1016/j.jde.2009.03.021.![]() ![]() ![]() |
[6] |
Y. Cao, Z. Wang and J. Yin, A note on the lifespan of semilinear pseudo-parabolic equation, Appl. Math. Lett., 98 (2019), 406-410.
doi: 10.1016/j.aml.2019.06.039.![]() ![]() ![]() |
[7] |
S. Chen and J. Yu, Dynamics of a diffusive predator–prey system with anonlinear growth rate for the predator, J. Differ. Equ., 260 (2016), 7923-7939.
doi: 10.1016/j.jde.2016.02.007.![]() ![]() ![]() |
[8] |
D. Q. Dai and Y. Huang, A moment problem for one-dimensional nonlinear pseudoparabolic equation, J. Math. Anal. Appl., 328 (2007), 1057-1067.
doi: 10.1016/j.jmaa.2006.06.010.![]() ![]() ![]() |
[9] |
C. Goudjo, B. Lèye and M. Sy, Weak solution to a parabolic nonlinear system arising in biological dynamic in the soil, Int. J. Differ. Equ., 2011
(2011), 24 pp.
doi: 10.1155/2011/831436.![]() ![]() ![]() |
[10] |
T. Hayat, M. Khan and M. Ayub, Some analytical solutions for second grade fluid flows for cylindrical geometries, Math. Comp. Model., 43 (2006), 16-29.
doi: 10.1016/j.mcm.2005.04.009.![]() ![]() ![]() |
[11] |
T. Hayat, F. Shahzad and M. Ayub, Analytical solution for the steady flow of the third grade fluid in a porous half space, Appl. Math. Model., 31 (2007), 2424-2432.
![]() |
[12] |
L. Kong, X. Wang and X. Zhao, Asymptotic analysis to a parabolic system with weighted localized sources and inner absorptions, Arch. Math., 99 (2012), 375-386.
doi: 10.1007/s00013-012-0433-8.![]() ![]() ![]() |
[13] |
B. Lèye, N.N. Doanh, O. Monga, P. Garnier and N. Nunan, Simulating biological dynamics using partial differential equations: Application to decomposition of organic matter in 3D soil structure, Vietnam J. Math., 43 (2015), 801-817.
doi: 10.1007/s10013-015-0159-6.![]() ![]() ![]() |
[14] |
J. L. Lions, Quelques méthodes de résolution des problémes aux limites non-linéaires, Dunod, Gauthier-Villars, Paris, 1969.
![]() ![]() |
[15] |
P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Meth. Appl. Sci., 38 (2015), 2636-2641.
doi: 10.1002/mma.3253.![]() ![]() ![]() |
[16] |
A. Sh. Lyubanova, On some boundary value problems for systems of pseudoparabolic equations, Siberian Math. J., 56 (2015), 662-677.
doi: 10.1134/s0037446615040102.![]() ![]() ![]() |
[17] |
A Sh. Lyubanova, Nonlinear boundary value problem for pseudoparabolic equation, J. Math. Anal. Appl., 493 (2021), 124514.
doi: 10.1016/j.jmaa.2020.124514.![]() ![]() ![]() |
[18] |
S. A. Messaoudi and A. A. Talahmeh, Blow up in a semilinear pseudoparabolic equation with variable exponents, Annali Dell'Universita' Di Ferrara, 65 (2019), 311-326.
doi: 10.1007/s11565-019-00326-1.![]() ![]() ![]() |
[19] |
M. Meyvaci, Blow up of solutions of pseudoparabolic equations, J. Math. Anal. Appl., 352 (2009), 629-633.
doi: 10.1016/j.jmaa.2008.11.016.![]() ![]() ![]() |
[20] |
L. T. P. Ngoc, N. H. Nhan and N. T. Long, General decay and blow-up results for a nonlinear pseudoparabolic equation with Robin-Dirichlet conditions, Math. Meth. Appl. Sci., 44 (2021), 8697-8725.
doi: 10.1002/mma.7299.![]() ![]() ![]() |
[21] |
N. T. Orumbayeva and A. B. Keldibekova, On one solution of a periodic boundary-value problem for a third-order pseudoparabolic equation, Lobachevskii J. Math., 41 (2020), 1864-1872.
doi: 10.1134/s1995080220090218.![]() ![]() ![]() |
[22] |
V. Padron, Effect of aggregation on population recovery modeled by a forward-backward, in pseudoparabolic equation,, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.
doi: 10.1090/S0002-9947-03-03340-3.![]() ![]() ![]() |
[23] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595.![]() ![]() ![]() |
[24] |
L. E. Payne and J. C. Song, Lower bounds for blow-up time in a nonlinear parabolic problem, J. Math. Anal. Appl., 354 (2009), 394-396.
doi: 10.1016/j.jmaa.2009.01.010.![]() ![]() ![]() |
[25] |
N. S. Popov, Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions, Differ. Equ., 51 (2015), 362-375.
doi: 10.1134/S0012266115030076.![]() ![]() ![]() |
[26] |
M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman Higher Education, 1987.
![]() ![]() |
[27] |
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.
doi: 10.1137/0501001.![]() ![]() ![]() |
[28] |
R. E. Showalter and T. W. Ting, Asymptotic behavior of solutions of pseudoparabolic partial differential equations, Annali Mat. Pura Appl., 90 (1971), 241-258.
doi: 10.1007/BF02415050.![]() ![]() ![]() |
[29] |
R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3 (1972), 527-543.
doi: 10.1137/0503051.![]() ![]() ![]() |
[30] |
R. E. Showater, Hilbert space methods for partial differential equations, Electron. J. Differ. Equ., Monograph 01, 1994.
![]() ![]() |
[31] |
S. L. Sobolev, A new problem in mathematical physics, Izv. Akad. Nauk SSSR Ser. Mat., 18 (1954), 3-50.
![]() ![]() |
[32] |
F. Sun, L. Liu and Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal., 98 (2019), 735-755.
doi: 10.1080/00036811.2017.1400536.![]() ![]() ![]() |
[33] |
Y. Tian and Z. Xiang, Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition, J. Differ. Equ., 269 (2020), 2012-2056.
doi: 10.1016/j.jde.2020.01.031.![]() ![]() ![]() |
[34] |
T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal., 14 (1963), 1-26.
doi: 10.1007/BF00250690.![]() ![]() ![]() |
[35] |
B. B. Tsegaw, Nonexistence of solutions to Cauchy problems for anisotropic pseudoparabolic equations, J. Ellip. Para. Equ., 6 (2020), 919-934.
doi: 10.1007/s41808-020-00087-5.![]() ![]() ![]() |
[36] |
E. Vitillaro, Global existence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), 155-182.
doi: 10.1007/s002050050171.![]() ![]() ![]() |
[37] |
R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010.![]() ![]() ![]() |
[38] |
G. Xu and J. Zhou, Lifespan for a semilinear pseudo-parabolic equation, Math. Meth. Appl. Sci., 41 (2018), 705-713.
doi: 10.1002/mma.4639.![]() ![]() ![]() |
[39] |
E. V. Yushkov, Existence and blow-up of solutions of a pseudoparabolic equation, Differ. Equ., 47 (2011), 291-295.
doi: 10.1134/S0012266111020169.![]() ![]() ![]() |
[40] |
K. Zennir and T. Miyasita, Lifespan of solutions for a class of pseudoparabolic equation with weak memory, Alex. Engineer. J., 59 (2020), 957-964.
![]() |
[41] |
L. Zhang, Decay of solution of generalized Benjamin-Bona-Mahony-Burgers equations in n-space dimensions, Nonlinear Anal. TMA., 25 (1995), 1343-1369.
doi: 10.1016/0362-546X(94)00252-D.![]() ![]() ![]() |
[42] |
J. Zhou, Initial boundary value problem for a inhomogeneous pseudo-parabolic equation, Electron. Res. Arch., 28 (2020), 67-90.
doi: 10.3934/era.2020005.![]() ![]() ![]() |
[43] |
X. Zhu, F. Li and Y. Li, Global solutions and blow-up solutions to a class pseudoparabolic equations with nonlocal term, Appl. Math. Comp., 329 (2018), 38-51.
doi: 10.1016/j.amc.2018.02.003.![]() ![]() ![]() |