-
Previous Article
Synchronized and ground-state solutions to a coupled Schrödinger system
- CPAA Home
- This Issue
-
Next Article
On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions
Blowing-up solutions for a supercritical elliptic equation
Sfax University, Sfax Business School, Tunisia, Ecole Superieure de Commerce de Sfax, BP 1081, 3018, Sfax, Tunisia |
This paper concerns the existence of solutions of the following supercritical PDE: $ (P_\varepsilon) $: $ -\Delta u = K|u|^{\frac{4}{n-2}+\varepsilon}u\; \mbox{ in }\Omega, \; u = 0 \mbox{ on }\partial\Omega, $ where $ \Omega $ is a smooth bounded domain in $ \mathbb{R}^n $, $ n\geq 3 $, $ K $ is a $ C^3 $ positive function and $ \varepsilon $ is a small positive real. Our method is inspired from the work of Bahri-Li-Rey. It consists to reduce the existence of a critical point to a finite dimensional system. Using a fixed-point theorem, we are able to construct positive solutions of $ (P_\varepsilon) $ having the form of two bubbles with non comparable speeds and which have only one blow-up point in $ \Omega $. That means that this blow-up point is non simple. This represents a new phenomenon compared with the subcritical case.
References:
[1] |
A. Bahri, Critical Point at Infinity in Some Variational Problem, Pitman Res. Notes math, Ser 182, Longman Sci. Tech. Harlow, 1989. |
[2] |
A. Bahri and J. M. Coron,
On a nonlinear elliptic equation involving the critical Sobolev exponent: The effet of topology of the domain, Commun. pure Appl. Math., 41 (1988), 255-294.
doi: 10.1002/cpa.3160410302. |
[3] |
A. Bahri and J. M. Coron,
The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172.
doi: 10.1016/0022-1236(91)90026-2. |
[4] |
A. Bahri and Y. Xu, Recent Pregress in Conformal Geometry, Advan. Imperial College Press, Londres, 2007.
doi: 10.1142/9781860948602.![]() ![]() ![]() |
[5] |
A. Bahri, Y. Y Li and O. Rey,
On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Cal. Var. Partial Differ. Equ. V., 3 (1995), 67-93.
doi: 10.1007/BF01190892. |
[6] |
T. Bartsch and T. Weth,
A note on additonnal properties of sign-changing solutions to super-linear elliptic equations, Top. Metho. Nonlin. Anal., 22 (2003), 1-14.
doi: 10.12775/TMNA.2003.025. |
[7] |
M. Ben Ayed,
Finite dimensional reduction of a supercritical exponent equation, Tunisian J. Math., 2 (2020), 379-397.
doi: 10.2140/tunis.2020.2.379. |
[8] |
M. Ben Ayed and Y. Dammak,
Construction of solutions of a supercritical elliptic PDE in low dimensions, Ann. Matemat. Pura Appl., 200 (2021), 51-66.
doi: 10.1007/s10231-020-00982-7. |
[9] |
M. Ben Ayed, K. El Mehdi, M. Grossi and O. Rey,
A Nonexistence results of sigle peaked solutions to a supercritical nonlinear problem, Commun. Contemp. Math., 2 (2003), 179-195.
doi: 10.1142/S0219199703000951. |
[10] |
M. Ben Ayed and K. Ould Bouh,
Nonexistence results of sign-changing solutions to supercritical nonlinear problem, Commun. Pure Appl. Anal., 7 (2008), 1057-1075.
doi: 10.3934/cpaa.2008.7.1057. |
[11] |
M. Ben Ayed and K. Ould Bouh,
Construction of solutions of an elliptic PDE with a Supercritical exponent nonlinearity using the Finite Dimensional Reduction, Mon. Hefte. Math., 192 (2020), 49-63.
doi: 10.1007/s00605-020-01386-8. |
[12] |
D. Cao and S. Peng,
The asymptotic behavior of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.
doi: 10.1016/S0022-247X(02)00292-5. |
[13] |
A. Castro, J. Cossio and J. M. Newgerger,
A sign-changing solution for a supercritical Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.
doi: 10.1216/rmjm/1181071858. |
[14] |
Y. Dammak and R. Ghoudi,
Sign-changing tower of bubbles to an elliptic subcritical equation, Commun. Contemp. Math., 21 (2019), 1850052.
doi: 10.1142/S0219199718500529. |
[15] |
M. Del Pino, P. Felmer and M. Musso,
Two bubbles solutions in the supercritical Bahri-Coron's problem, Calc. Var. Partial Differ. Equ., 16 (2003), 113-145.
doi: 10.1007/s005260100142. |
[16] |
W. Y. Ding,
Positive solution of $\Delta u+u^{(n+2)/(n-2)} = 0$ on contractible domain, J. Partial Differ. Equ., 2 (1988), 83-88.
|
[17] |
S. Khenissi and O. Rey,
A criterion for existence of solutions to the supercritical Bahri-Coron's problem, Houston J. Math., 30 (2004), 587-613.
|
[18] |
Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems, part Ⅰ, J. Differ. Equ. 120 (1995), 319-410.
doi: 10.1006/jdeq.1995.1115. |
[19] |
Y. Y. Li,
Prescribing scalar curvature on $S^n$ and related problems, part Ⅱ: Existence and compactness, Commun. pure Appl. Math., 49 (1996), 541-597.
doi: 10.1006/jdeq.1995.1115. |
[20] |
D. Passaseo,
Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.
doi: 10.1006/jfan.1993.1064. |
[21] |
D. Passaseo,
Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J., 92 (1998), 429-457.
doi: 10.1215/S0012-7094-98-09213-4. |
[22] |
A. Pistoia and T. Weth,
Sign-changing bubble-tower solutions in a slightly subcritical semi-linear Dirichlet problem, Ann. Inst. H. Poincaré, Anal. nonlinéaire, 24 (2007), 325-340.
doi: 10.1016/j.anihpc.2006.03.002. |
show all references
References:
[1] |
A. Bahri, Critical Point at Infinity in Some Variational Problem, Pitman Res. Notes math, Ser 182, Longman Sci. Tech. Harlow, 1989. |
[2] |
A. Bahri and J. M. Coron,
On a nonlinear elliptic equation involving the critical Sobolev exponent: The effet of topology of the domain, Commun. pure Appl. Math., 41 (1988), 255-294.
doi: 10.1002/cpa.3160410302. |
[3] |
A. Bahri and J. M. Coron,
The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172.
doi: 10.1016/0022-1236(91)90026-2. |
[4] |
A. Bahri and Y. Xu, Recent Pregress in Conformal Geometry, Advan. Imperial College Press, Londres, 2007.
doi: 10.1142/9781860948602.![]() ![]() ![]() |
[5] |
A. Bahri, Y. Y Li and O. Rey,
On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Cal. Var. Partial Differ. Equ. V., 3 (1995), 67-93.
doi: 10.1007/BF01190892. |
[6] |
T. Bartsch and T. Weth,
A note on additonnal properties of sign-changing solutions to super-linear elliptic equations, Top. Metho. Nonlin. Anal., 22 (2003), 1-14.
doi: 10.12775/TMNA.2003.025. |
[7] |
M. Ben Ayed,
Finite dimensional reduction of a supercritical exponent equation, Tunisian J. Math., 2 (2020), 379-397.
doi: 10.2140/tunis.2020.2.379. |
[8] |
M. Ben Ayed and Y. Dammak,
Construction of solutions of a supercritical elliptic PDE in low dimensions, Ann. Matemat. Pura Appl., 200 (2021), 51-66.
doi: 10.1007/s10231-020-00982-7. |
[9] |
M. Ben Ayed, K. El Mehdi, M. Grossi and O. Rey,
A Nonexistence results of sigle peaked solutions to a supercritical nonlinear problem, Commun. Contemp. Math., 2 (2003), 179-195.
doi: 10.1142/S0219199703000951. |
[10] |
M. Ben Ayed and K. Ould Bouh,
Nonexistence results of sign-changing solutions to supercritical nonlinear problem, Commun. Pure Appl. Anal., 7 (2008), 1057-1075.
doi: 10.3934/cpaa.2008.7.1057. |
[11] |
M. Ben Ayed and K. Ould Bouh,
Construction of solutions of an elliptic PDE with a Supercritical exponent nonlinearity using the Finite Dimensional Reduction, Mon. Hefte. Math., 192 (2020), 49-63.
doi: 10.1007/s00605-020-01386-8. |
[12] |
D. Cao and S. Peng,
The asymptotic behavior of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.
doi: 10.1016/S0022-247X(02)00292-5. |
[13] |
A. Castro, J. Cossio and J. M. Newgerger,
A sign-changing solution for a supercritical Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.
doi: 10.1216/rmjm/1181071858. |
[14] |
Y. Dammak and R. Ghoudi,
Sign-changing tower of bubbles to an elliptic subcritical equation, Commun. Contemp. Math., 21 (2019), 1850052.
doi: 10.1142/S0219199718500529. |
[15] |
M. Del Pino, P. Felmer and M. Musso,
Two bubbles solutions in the supercritical Bahri-Coron's problem, Calc. Var. Partial Differ. Equ., 16 (2003), 113-145.
doi: 10.1007/s005260100142. |
[16] |
W. Y. Ding,
Positive solution of $\Delta u+u^{(n+2)/(n-2)} = 0$ on contractible domain, J. Partial Differ. Equ., 2 (1988), 83-88.
|
[17] |
S. Khenissi and O. Rey,
A criterion for existence of solutions to the supercritical Bahri-Coron's problem, Houston J. Math., 30 (2004), 587-613.
|
[18] |
Y. Y. Li, Prescribing scalar curvature on $S^n$ and related problems, part Ⅰ, J. Differ. Equ. 120 (1995), 319-410.
doi: 10.1006/jdeq.1995.1115. |
[19] |
Y. Y. Li,
Prescribing scalar curvature on $S^n$ and related problems, part Ⅱ: Existence and compactness, Commun. pure Appl. Math., 49 (1996), 541-597.
doi: 10.1006/jdeq.1995.1115. |
[20] |
D. Passaseo,
Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.
doi: 10.1006/jfan.1993.1064. |
[21] |
D. Passaseo,
Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J., 92 (1998), 429-457.
doi: 10.1215/S0012-7094-98-09213-4. |
[22] |
A. Pistoia and T. Weth,
Sign-changing bubble-tower solutions in a slightly subcritical semi-linear Dirichlet problem, Ann. Inst. H. Poincaré, Anal. nonlinéaire, 24 (2007), 325-340.
doi: 10.1016/j.anihpc.2006.03.002. |
[1] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
[2] |
Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 |
[3] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[4] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[5] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 |
[6] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[7] |
Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 |
[8] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[9] |
Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941 |
[10] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060 |
[11] |
Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065 |
[12] |
Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715 |
[13] |
Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010 |
[14] |
Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 |
[15] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[16] |
Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25. |
[17] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[18] |
Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577 |
[19] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[20] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]