February  2022, 21(2): 669-686. doi: 10.3934/cpaa.2021193

Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term

1. 

School of Mathematics and Statistics, Fujian Normal University, Qishan Campus, Fuzhou 350117, China

2. 

FJKLMAA and Center for Applied Mathematics of Fujian Province(FJNU), Fuzhou, 350117, China

*Corresponding author

Received  June 2021 Published  February 2022 Early access  November 2021

Fund Project: This work was supported by the National Natural Science Foundation of China (11871152) and Key Project of Natural Science Foundation of Fujian (2020J02035)

This paper is concerned with the following quasilinear Schrödinger system in the entire space
$ \mathbb R^{N}(N\geq3) $
:
$ \left\{\begin{aligned} &-\Delta u+A(x)u+\frac{k}{2}\triangle(u^{2})u = \frac{2\alpha }{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\\ &-\Delta v+Bv+\frac{k}{2}\triangle(v^{2})v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\\ & u(x)\to 0,\ \ v(x)\to 0\ \ \hbox{as}\ |x|\to \infty,\end{aligned}\right. $
where
$ \alpha,\beta>1 $
,
$ 2<\alpha+\beta<2^* = \frac{2N}{N-2} $
and
$ k >0 $
is a parameter. By using the principle of symmetric criticality and the moser iteration, for any given integer
$ \xi\geq2 $
, we construct a non-radially symmetrical nodal solution with its
$ 2\xi $
nodal domains. Our results can be looked on as a generalization to results by Alves, Wang and Shen (Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259 (2015) 318-343).
Citation: Jianqing Chen, Qian Zhang. Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term. Communications on Pure and Applied Analysis, 2022, 21 (2) : 669-686. doi: 10.3934/cpaa.2021193
References:
[1]

C. AlvesY. Wang and Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equ., 259 (2015), 318-343.  doi: 10.1016/j.jde.2015.02.030.

[2]

T. Bartsch and Z. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb R^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[3]

H. Berestycki and P. Lion, Nonlinear Scalar field equations, Ⅰ, Arch. Ration. Mech. Anal., 82 (1983), 313-346.  doi: 10.1007/BF00250555.

[4]

G. BonnaudH. BrandiC. ManusG. Mainfray and T. Lehner, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Ⅰ: paraxial approximation, Phys. Fluids, 5 (1993), 3539-3550. 

[5]

A. Borovskii and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562-573. 

[6]

A. BouardN. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191.

[7]

H. Brézis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.

[8]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations, Expos. Math., 4 (1986), 278-288. 

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[10]

D. Costa and Z. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787-794.  doi: 10.1090/S0002-9939-04-07635-X.

[11]

Y. DengS. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations, J. Math. Phys., 55 (2014), 051501.  doi: 10.1063/1.4874108.

[12]

Y. DengS. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, J. Math. Phys., 54 (2013), 011504.  doi: 10.1063/1.4774153.

[13]

J. Gamboa and J. Zhou, Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations, Electron. J. Qual. Theory Differ. Equ., 16 (2020), 1-18.  doi: 10.14232/ejqtde.2020.1.16.

[14]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.

[15]

C. Huang and G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705-727.  doi: 10.1016/j.jmaa.2018.11.048.

[16]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3801.

[17]

P. Lions, The concentration-compactness principle in the calculus of variations, Part 1-2, Ann. Inst. H. Poincaré., 1 (1984), 109-145 and 223–283.

[18]

H. Liu, Positive solution for a quasilinear elliptic equation involving critical or supercritical exponent, J. Math. Phys., 57 (2016), 159-180.  doi: 10.1063/1.4947109.

[19]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[20]

J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.

[21]

V. Moroz and J. Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.

[22]

M. PoppenbergK. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[23]

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[24]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E., 50 (1994), 687-689. 

[25]

E. Silva and G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equ., 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.

[26]

A. Szulkin and S. Waliullah, Sign-changing and symmetry-breaking solutions to singular problems, Complex Var. Theory Appl., 57 (2012), 1191-1208.  doi: 10.1080/17476933.2010.504849.

[27]

Y. Wang, Multiplicity of solutions for singular quasilinear Schrödinger equations with critical exponents, J. Math. Anal. Appl., 458 (2018), 1027-1043.  doi: 10.1016/j.jmaa.2017.10.015.

[28]

M. Willem, Minimax Theorems, Birkhäuser, 1996. doi: 10.1007/978-1-4612-4146-1.

[29]

W. Zhang and X. Liu, Infinitely many sign-changing solutions for a quasilinear elliptic equation in $\mathbb R^{N}$, J. Math. Anal. Appl., 427 (2015), 722-740.  doi: 10.1016/j.jmaa.2015.02.070.

show all references

References:
[1]

C. AlvesY. Wang and Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equ., 259 (2015), 318-343.  doi: 10.1016/j.jde.2015.02.030.

[2]

T. Bartsch and Z. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb R^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[3]

H. Berestycki and P. Lion, Nonlinear Scalar field equations, Ⅰ, Arch. Ration. Mech. Anal., 82 (1983), 313-346.  doi: 10.1007/BF00250555.

[4]

G. BonnaudH. BrandiC. ManusG. Mainfray and T. Lehner, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Ⅰ: paraxial approximation, Phys. Fluids, 5 (1993), 3539-3550. 

[5]

A. Borovskii and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562-573. 

[6]

A. BouardN. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191.

[7]

H. Brézis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.

[8]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations, Expos. Math., 4 (1986), 278-288. 

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[10]

D. Costa and Z. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787-794.  doi: 10.1090/S0002-9939-04-07635-X.

[11]

Y. DengS. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations, J. Math. Phys., 55 (2014), 051501.  doi: 10.1063/1.4874108.

[12]

Y. DengS. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, J. Math. Phys., 54 (2013), 011504.  doi: 10.1063/1.4774153.

[13]

J. Gamboa and J. Zhou, Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations, Electron. J. Qual. Theory Differ. Equ., 16 (2020), 1-18.  doi: 10.14232/ejqtde.2020.1.16.

[14]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.

[15]

C. Huang and G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705-727.  doi: 10.1016/j.jmaa.2018.11.048.

[16]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3801.

[17]

P. Lions, The concentration-compactness principle in the calculus of variations, Part 1-2, Ann. Inst. H. Poincaré., 1 (1984), 109-145 and 223–283.

[18]

H. Liu, Positive solution for a quasilinear elliptic equation involving critical or supercritical exponent, J. Math. Phys., 57 (2016), 159-180.  doi: 10.1063/1.4947109.

[19]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[20]

J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.

[21]

V. Moroz and J. Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.

[22]

M. PoppenbergK. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[23]

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[24]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E., 50 (1994), 687-689. 

[25]

E. Silva and G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equ., 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.

[26]

A. Szulkin and S. Waliullah, Sign-changing and symmetry-breaking solutions to singular problems, Complex Var. Theory Appl., 57 (2012), 1191-1208.  doi: 10.1080/17476933.2010.504849.

[27]

Y. Wang, Multiplicity of solutions for singular quasilinear Schrödinger equations with critical exponents, J. Math. Anal. Appl., 458 (2018), 1027-1043.  doi: 10.1016/j.jmaa.2017.10.015.

[28]

M. Willem, Minimax Theorems, Birkhäuser, 1996. doi: 10.1007/978-1-4612-4146-1.

[29]

W. Zhang and X. Liu, Infinitely many sign-changing solutions for a quasilinear elliptic equation in $\mathbb R^{N}$, J. Math. Anal. Appl., 427 (2015), 722-740.  doi: 10.1016/j.jmaa.2015.02.070.

[1]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[2]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[3]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[4]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[5]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[6]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[9]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[10]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[11]

Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234

[12]

João Marcos do Ó, Abbas Moameni. Solutions for singular quasilinear Schrödinger equations with one parameter. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1011-1023. doi: 10.3934/cpaa.2010.9.1011

[13]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[14]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[15]

Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010

[16]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214

[17]

Anna Maria Candela, Caterina Sportelli. Soliton solutions for quasilinear modified Schrödinger equations in applied sciences. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022121

[18]

Weiwei Ao, Liping Wang, Wei Yao. Infinitely many solutions for nonlinear Schrödinger system with non-symmetric potentials. Communications on Pure and Applied Analysis, 2016, 15 (3) : 965-989. doi: 10.3934/cpaa.2016.15.965

[19]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[20]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (179)
  • HTML views (157)
  • Cited by (0)

Other articles
by authors

[Back to Top]