# American Institute of Mathematical Sciences

• Previous Article
Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model
• CPAA Home
• This Issue
• Next Article
Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations
doi: 10.3934/cpaa.2021194
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Nonnegative solutions to a doubly degenerate nutrient taxis system

 1 College of Information and Technology, Donghua University, Shanghai 201620, China 2 Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

* Corresponding author

Received  May 2021 Revised  October 2021 Early access November 2021

Fund Project: The first author was funded by the China Scholarship Council (No. 202006630070). The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (No. 411007140, GZ: WI 3707/5-1)

This paper deals with the doubly degenerate nutrient taxis system
 $\begin{eqnarray*} \left\{ \begin{array}{ll} u_t = (uv u_x)_x - (u^2 vv_x)_x + \ell uv, \qquad & x\in \Omega, \ t>0, \\ v_t = v_{xx} -uv, \qquad & x\in \Omega, \ t>0, \end{array} \right. \end{eqnarray*}$
in an open bounded interval
 $\Omega\subset \mathbb{R}$
, with
 $\ell \ge0$
, which has been proposed to model the formation of diverse morphological aggregation patterns observed in colonies of Bacillus subtilis growing on the surface of thin agar plates.
It is shown that under the mere assumption that
 $\begin{eqnarray*} \left\{ \begin{array}{l} u_0\in W^{1,\infty}( \Omega) \mbox{ is nonnegative with } u_0\not\equiv 0 \qquad \mbox{and} \\ v_0\in W^{1,\infty}( \Omega) \mbox{ is positive in } \overline{\Omega}, \end{array} \right. \qquad \qquad (\star) \end{eqnarray*}$
an associated no-flux initial boundary value problem possesses a globally defined and continuous weak solution
 $(u,v)$
, where
 $u\ge 0$
and
 $v>0$
in
 $\overline{\Omega}\times [0,\infty)$
, and that moreover there exists
 $u_\infty\in C^0( \overline{\Omega})$
such that the solution
 $(u,v)$
approaches the pair
 $(u_\infty,0)$
in the large time limit with respect to the topology
 $(L^{\infty}( \Omega)) ^2$
. This extends comparable results recently obtained in [17], the latter crucially relying on the additional requirement that
 $\int_\Omega \ln u_0>-\infty$
, to situations involving nontrivially supported initial data
 $u_0$
, which seems to be of particular relevance in the addressed application context of sparsely distributed populations.
Citation: Genglin Li, Michael Winkler. Nonnegative solutions to a doubly degenerate nutrient taxis system. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021194
##### References:

show all references

##### References:
 [1] Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262 [2] Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168 [3] Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258 [4] Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 [5] Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 [6] Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345 [7] Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737 [8] Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334 [9] Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617 [10] Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193 [11] Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091 [12] Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212 [13] Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035 [14] Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 [15] Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026 [16] Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170 [17] Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133 [18] Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178 [19] Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050 [20] Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

2020 Impact Factor: 1.916