• Previous Article
    Bifurcation, uniqueness and multiplicity results for classes of reaction diffusion equations arising in ecology with nonlinear boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term
February  2022, 21(2): 687-704. doi: 10.3934/cpaa.2021194

Nonnegative solutions to a doubly degenerate nutrient taxis system

1. 

College of Information and Technology, Donghua University, Shanghai 201620, China

2. 

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

* Corresponding author

Received  May 2021 Revised  October 2021 Published  February 2022 Early access  November 2021

Fund Project: The first author was funded by the China Scholarship Council (No. 202006630070). The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (No. 411007140, GZ: WI 3707/5-1)

This paper deals with the doubly degenerate nutrient taxis system
$ \begin{eqnarray*} \left\{ \begin{array}{ll} u_t = (uv u_x)_x - (u^2 vv_x)_x + \ell uv, \qquad & x\in \Omega, \ t>0, \\ v_t = v_{xx} -uv, \qquad & x\in \Omega, \ t>0, \end{array} \right. \end{eqnarray*} $
in an open bounded interval
$ \Omega\subset \mathbb{R} $
, with
$ \ell \ge0 $
, which has been proposed to model the formation of diverse morphological aggregation patterns observed in colonies of Bacillus subtilis growing on the surface of thin agar plates.
It is shown that under the mere assumption that
$ \begin{eqnarray*} \left\{ \begin{array}{l} u_0\in W^{1,\infty}( \Omega) \mbox{ is nonnegative with } u_0\not\equiv 0 \qquad \mbox{and} \\ v_0\in W^{1,\infty}( \Omega) \mbox{ is positive in } \overline{\Omega}, \end{array} \right. \qquad \qquad (\star) \end{eqnarray*} $
an associated no-flux initial boundary value problem possesses a globally defined and continuous weak solution
$ (u,v) $
, where
$ u\ge 0 $
and
$ v>0 $
in
$ \overline{\Omega}\times [0,\infty) $
, and that moreover there exists
$ u_\infty\in C^0( \overline{\Omega}) $
such that the solution
$ (u,v) $
approaches the pair
$ (u_\infty,0) $
in the large time limit with respect to the topology
$ (L^{\infty}( \Omega)) ^2 $
. This extends comparable results recently obtained in [17], the latter crucially relying on the additional requirement that
$ \int_\Omega \ln u_0>-\infty $
, to situations involving nontrivially supported initial data
$ u_0 $
, which seems to be of particular relevance in the addressed application context of sparsely distributed populations.
Citation: Genglin Li, Michael Winkler. Nonnegative solutions to a doubly degenerate nutrient taxis system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 687-704. doi: 10.3934/cpaa.2021194
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value probems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math, vol 133 (eds. H. Schmeisser and H. Triebel), Teubner, Stuttgart, (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.

[2]

M. DelgadoI. GayteC. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330-347.  doi: 10.1016/j.na.2009.06.057.

[3]

H. Fujikawa, Periodic growth of Bacillus subtilis colonies on agar plates, Phys. A, 189 (1992), 15-21.  doi: 10.1016/0378-4371(92)90123-8.

[4]

H. Fujikawa and M. Matsushita, Fractal growth of Bacillus subtilis on agar plates, J. Phys. Soc. Japan, 47 (1989), 2764-2767.  doi: 10.1143/JPSJ.58.3875.

[5]

K. KawasakiA. MochizukiT. Umeda and N. Shigesada, Modeling spatio-temporal patterns generated by Bacillus subtilis, J. Math. Biol., 188 (1997), 177-185.  doi: 10.1006/jtbi.1997.0462.

[6]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Math. Biol, 26 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.

[7]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Trans., Providence, RI, 1968

[8]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity, J. Differ. Equ., 262 (2017), 4052-4084.  doi: 10.1016/j.jde.2016.12.007.

[9]

Ph. Laurençot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, in Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 64 (eds. H. Brezis, M. Chipot, J. Escher), Birkhäuser Basel, (2005), 273–290. doi: https://doi.org/10.1007/3-7643-7385-7_16.

[10]

M. Matsushita and H. Fujikawa, Diffusion-limited growth in bacterial colony formation, Phys. A, 168 (1990), 498-506.  doi: 10.1016/0378-4371(90)90402-E.

[11]

J. F. LeyvaC. Málaga and R. G. Plaza, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Phys. A, 392 (2013), 5644-5662.  doi: 10.1016/j.physa.2013.07.022.

[12]

R. G. Plaza, Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process, J. Math. Biol, 78 (2019), 1681-1711.  doi: 10.1007/s00285-018-1323-x.

[13]

M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.

[14]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[15]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[16]

Z. A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equ., 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.

[17]

M. Winkler, Does spatial homogeneity ultimately prevail in nutrient taxis systems? A paradigm for structure support by rapid diffusion decay in an autonomous parabolic flow, Trans. Amer. Math. Soc., 374 (2021), 219-268.  doi: 10.1090/tran/8163.

[18]

M. Winkler, Small-signal solutions of a two-dimensional doubly degenerate taxis system modeling bacterial motion in nutrient-poor environments, Nonlinear Anal. Real World Appl., 63 (2022), 103407.  doi: 10.1016/j.nonrwa.2021.103407.

[19]

M. Winkler, Elliptic Harnack inequalities in linear parabolic equations and application to the asymptotics in a doubly degenerate nutrient taxis system, preprint.

[20]

M. Winkler, Stabilization of arbitrary structures in a doubly degenerate reaction-diffusion model for bacterial motion on a nutrient-poor agar, preprint.

[21]

M. Winkler, Persistent localization vs. eventual positivity in a doubly degenerate reaction-diffusion(- chemotaxis) system modeling bacterial motion in nutrient-poor environments, preprint.

[22]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59 (2004), 1293-1310.  doi: 10.1016/j.na.2004.08.015.

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value probems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math, vol 133 (eds. H. Schmeisser and H. Triebel), Teubner, Stuttgart, (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.

[2]

M. DelgadoI. GayteC. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330-347.  doi: 10.1016/j.na.2009.06.057.

[3]

H. Fujikawa, Periodic growth of Bacillus subtilis colonies on agar plates, Phys. A, 189 (1992), 15-21.  doi: 10.1016/0378-4371(92)90123-8.

[4]

H. Fujikawa and M. Matsushita, Fractal growth of Bacillus subtilis on agar plates, J. Phys. Soc. Japan, 47 (1989), 2764-2767.  doi: 10.1143/JPSJ.58.3875.

[5]

K. KawasakiA. MochizukiT. Umeda and N. Shigesada, Modeling spatio-temporal patterns generated by Bacillus subtilis, J. Math. Biol., 188 (1997), 177-185.  doi: 10.1006/jtbi.1997.0462.

[6]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Math. Biol, 26 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.

[7]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Trans., Providence, RI, 1968

[8]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity, J. Differ. Equ., 262 (2017), 4052-4084.  doi: 10.1016/j.jde.2016.12.007.

[9]

Ph. Laurençot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, in Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 64 (eds. H. Brezis, M. Chipot, J. Escher), Birkhäuser Basel, (2005), 273–290. doi: https://doi.org/10.1007/3-7643-7385-7_16.

[10]

M. Matsushita and H. Fujikawa, Diffusion-limited growth in bacterial colony formation, Phys. A, 168 (1990), 498-506.  doi: 10.1016/0378-4371(90)90402-E.

[11]

J. F. LeyvaC. Málaga and R. G. Plaza, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Phys. A, 392 (2013), 5644-5662.  doi: 10.1016/j.physa.2013.07.022.

[12]

R. G. Plaza, Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process, J. Math. Biol, 78 (2019), 1681-1711.  doi: 10.1007/s00285-018-1323-x.

[13]

M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.

[14]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[15]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[16]

Z. A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equ., 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.

[17]

M. Winkler, Does spatial homogeneity ultimately prevail in nutrient taxis systems? A paradigm for structure support by rapid diffusion decay in an autonomous parabolic flow, Trans. Amer. Math. Soc., 374 (2021), 219-268.  doi: 10.1090/tran/8163.

[18]

M. Winkler, Small-signal solutions of a two-dimensional doubly degenerate taxis system modeling bacterial motion in nutrient-poor environments, Nonlinear Anal. Real World Appl., 63 (2022), 103407.  doi: 10.1016/j.nonrwa.2021.103407.

[19]

M. Winkler, Elliptic Harnack inequalities in linear parabolic equations and application to the asymptotics in a doubly degenerate nutrient taxis system, preprint.

[20]

M. Winkler, Stabilization of arbitrary structures in a doubly degenerate reaction-diffusion model for bacterial motion on a nutrient-poor agar, preprint.

[21]

M. Winkler, Persistent localization vs. eventual positivity in a doubly degenerate reaction-diffusion(- chemotaxis) system modeling bacterial motion in nutrient-poor environments, preprint.

[22]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59 (2004), 1293-1310.  doi: 10.1016/j.na.2004.08.015.

[1]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[2]

Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022062

[3]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[4]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[5]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[6]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[7]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[8]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[9]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[10]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[11]

Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193

[12]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[13]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[14]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[15]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[16]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[17]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[18]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[19]

Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178

[20]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (158)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]