We investigate Hardy-Rellich inequalities for perturbed Laplacians. In particular, we show that a non-trivial angular perturbation of the free operator typically improves the inequality, and may also provide an estimate which does not hold in the free case. The main examples are related to the introduction of a magnetic field: this is a manifestation of the diamagnetic phenomenon, which has been observed by Laptev and Weidl in [21] for the Hardy inequality, later by Evans and Lewis in [9] for the Rellich inequality; however, to the best of our knowledge, the so called Hardy-Rellich inequality has not yet been investigated in this regards. After showing the optimal inequality, we prove that the best constant is not attained by any function in the domain of the estimate.
Citation: |
[1] | A. Balinsky, A. Laptev and A. Sobolev, Generalized Hardy inequality for the magnetic Dirichlet forms, J. Stat. Phys., 116 (2004), 507-521. doi: 10.1023/B:JOSS.0000037228.35518.ca. |
[2] | W. Beckner, Weighted inequalities and Stein-Weiss potentials, Forum Math., 20 (2008), 587-606. doi: 10.1515/FORUM.2008.030. |
[3] | D. M. Bennett, An extension of Rellich's inequality, Proc. Amer. Math. Soc., 106 (1989), 987-993. doi: 10.2307/2047283. |
[4] | B. Cassano and F. Pizzichillo, Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials, Lett. Math. Phys., 108 (2018), 2635-2667. doi: 10.1007/s11005-018-1093-9. |
[5] | C. Cazacu, A new proof of the Hardy-Rellich inequality in any dimension, Proc. Roy. Soc. Edinb. A, 150 (2020), 2894-2904. doi: 10.1017/prm.2019.50. |
[6] | C. Cazacu and D. Krejčiřík, The Hardy inequality and the heat equation with magnetic field in any dimension, Commun. Partial Differ. Equ., 41 (2016), 1056-1088. doi: 10.1080/03605302.2016.1179317. |
[7] | Y. Colin de Verdière and F. Truc, Confining quantum particles with a purely magnetic field, Ann. I Fourier, 60 (2010), 2333-2356. |
[8] | D. G. Costa, On Hardy-Rellich type inequalities in $ \mathbb{R}^N$, Appl. Math. Lett., 22 (2009), 902-905. doi: 10.1016/j.aml.2008.02.018. |
[9] | W. D. Evans and R. T. Lewis, On the Rellich inequality with magnetic potentials, Math. Z., 251 (2005), 267-284. doi: 10.1007/s00209-005-0798-5. |
[10] | L. Fanelli, V. Felli, M. Fontelos and A. Primo, Time decay of scaling invariant electromagnetic Schrödinger equations on the plane, Commun. Math. Phys., 337 (2015), 1515-1533. doi: 10.1007/s00220-015-2291-2. |
[11] | L. Fanelli, D. Krejčiřík, A. Laptev and L. Vega, On the improvement of the Hardy inequality due to singular magnetic fields, Commun. Partial Differ. Equ., 45 (2020), 1202-1212. doi: 10.1080/03605302.2020.1763399. |
[12] | V. Felli, E. Marchini and S. Terracini, On the behavior of solutions to Schrödinger equations with dipole-type potentials near the singularity, Discret. Contin. Dynam. Syst., 21 (2007), 91-119. doi: 10.3934/dcds.2008.21.91. |
[13] | R. L. Frank and M. Loss, Which magnetic fields support a zero mode?, arXiv: 2012.13646. |
[14] | F. Gesztesy and L. Littlejohn, Factorizations and Hardy-Rellich-type inequalities, arXiv: 1701.08929. |
[15] | N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57. doi: 10.1007/s00208-010-0510-x. |
[16] | N. Hamamoto, Sharp uncertainty principle inequality for solenoidal fields, arXiv: 2104.02351. |
[17] | N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curl-free vector fields, Math. Ann., 379 (2021), 719-742. doi: 10.1007/s00208-019-01945-x. |
[18] | N. Hamamoto and F. Takahashi, A curl-free improvement of the Rellich-Hardy inequality with weight, arXiv: 2101.01878. |
[19] | N. Ioku, M. Ishiwata and T. Ozawa, Sharp remainder of a critical Hardy inequality, Arch. Math., 106 (2016), 65-71. doi: 10.1007/s00013-015-0841-7. |
[20] | I. Kombe and M. Ozaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 361 (2009), 6191-6203. doi: 10.1090/S0002-9947-09-04642-X. |
[21] | A. Laptev and T. Weidl, Hardy inequalities for magnetic Dirichlet forms, Oper. Theory Adv. Appl., 108 (1999), 299-305. |
[22] | E. H. Lieb and M. Loss, Analysis, Second Edition, American Mathematical Society, Providence, Rhode Island, 2001. |
[23] | V. H. Nguyen, New sharp Hardy and Rellich type inequalities on Cartan-Hadamard manifolds and their improvements, Proc. Roy. Soc. Edinburgh Sect. A., 150 (2020), 2952-2981. doi: 10.1017/prm.2019.37. |
[24] | F. Rellich and J. Berkowitz, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York, London, Paris, 1969. |
[25] | K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Springer, Dordrecht, 2012. doi: 10.1007/978-94-007-4753-1. |
[26] | A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math., 206 (2007), 407-459. doi: 10.1016/j.aim.2006.05.011. |
[27] | J. C. Thomas, Some Problems Associated with Sum and Integral Inequalities, Ph.D. thesis, Cardiff University in Wales, 2007. |
[28] | D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144. doi: 10.1006/jfan.1999.3462. |