• Previous Article
    Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread
  • CPAA Home
  • This Issue
  • Next Article
    Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type
doi: 10.3934/cpaa.2022003
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension

Departamento de Matemática Aplicada, Ciencia e Ingenieria de los Materiales y Tecnologia Electrónica, Universidad Rey Juan Carlos, Móstoles, 28933, Madrid, Spain

* Corresponding author

Received  August 2021 Early access December 2021

Fund Project: R. I. and A. S. are partially supported by the Spanish project PID2020-115273GB-I00. A. I. M. is partially supported by the Spanish project RTI2018-098743-B-100

We classify the finite time blow-up profiles for the following reaction-diffusion equation with unbounded weight:
$ \partial_tu = \Delta u^m+|x|^{\sigma}u^p, $
posed in any space dimension
$ x\in \mathbb{R}^N $
,
$ t\geq0 $
and with exponents
$ m>1 $
,
$ p\in(0, 1) $
and
$ \sigma>2(1-p)/(m-1) $
. We prove that blow-up profiles in backward self-similar form exist for the indicated range of parameters, showing thus that the unbounded weight has a strong influence on the dynamics of the equation, merging with the nonlinear reaction in order to produce finite time blow-up. We also prove that all the blow-up profiles are compactly supported and might present two different types of interface behavior and three different possible good behaviors near the origin, with direct influence on the blow-up behavior of the solutions. We classify all these profiles with respect to these different local behaviors depending on the magnitude of
$ \sigma $
. This paper generalizes in dimension
$ N>1 $
previous results by the authors in dimension
$ N = 1 $
and also includes some finer classification of the profiles for
$ \sigma $
large that is new even in dimension
$ N = 1 $
.
Citation: Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2022003
References:
[1]

D. Andreucci and E. DiBenedetto, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Scuola Norm. Sup. Pisa, 18 (1991), 363-441.   Google Scholar

[2]

D. Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differ. Equ., 10 (2005), 89-120.   Google Scholar

[3]

C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 316 (1989), 595-622.  doi: 10.2307/2001363.  Google Scholar

[4]

P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differ. Equ., 68 (1987), 238-252.  doi: 10.1016/0022-0396(87)90194-X.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer Verlag, New York-Berlin, 1982.  Google Scholar

[6]

T. Date, Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems, J. Differ. Equ., 32 (1979), 311-334.  doi: 10.1016/0022-0396(79)90037-8.  Google Scholar

[7]

R. Ferreira and A. de Pablo, Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions, Rev. Mat. Complut., 31 (2018), 805-832.  doi: 10.1007/s13163-018-0267-4.  Google Scholar

[8]

R. FerreiraA. de Pablo and J. L. Vázquez, Classification of blow-up with nonlinear diffusion and localized reaction, J. Differ. Equ., 231 (2006), 195-211.  doi: 10.1016/j.jde.2006.04.017.  Google Scholar

[9]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl., 316 (2006), 538-555.  doi: 10.1016/j.jmaa.2005.05.007.  Google Scholar

[10]

J. Guckenheimer and Ph. Holmes, Nonlinear oscillation, dynamical systems and bifurcations of vector fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1990.  Google Scholar

[11]

J. S. GuoC. S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient, Dynam. Systems Appl., 19 (2010), 415-433.   Google Scholar

[12]

J. S. GuoC. S. Lin and M. Shimojo, Blow-up for a reaction-diffusion equation with variable coefficient, Appl. Math. Lett., 26 (2013), 150-153.  doi: 10.1016/j.aml.2012.07.017.  Google Scholar

[13]

J. S. Guo and M. Shimojo, Blowing up at zero points of potential for an initial boundary value problem, Commun. Pure Appl. Anal., 10 (2011), 161-177.  doi: 10.3934/cpaa.2011.10.161.  Google Scholar

[14]

J. S. Guo and P. Souplet, Excluding blowup at zero points of the potential by means of Liouville-type theorems, J. Differ. Equ., 265 (2018), 4942-4964.  doi: 10.1016/j.jde.2018.06.025.  Google Scholar

[15]

R. G. Iagar and A. Sánchez, Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction with linear growth, J. Dynam. Differ. Equ., 31 (2019), 2061-2094.  doi: 10.1007/s10884-018-09727-w.  Google Scholar

[16]

R. G. Iagar and A. Sánchez, Blow up profiles for a reaction-diffusion equation with critical weighted reaction, Nonlinear Anal., 191 (2020), 111628, 24 pp. doi: 10.1016/j.na.2019.111628.  Google Scholar

[17]

R. G. Iagar and A. Sánchez, Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction, Adv. Nonlinear Stud., 20 (2020), 867-894.  doi: 10.1515/ans-2020-2104.  Google Scholar

[18]

R. G. Iagar and A. Sánchez, Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction, J. Differ. Equ., 272 (2021), 560-605.  doi: 10.1016/j.jde.2020.10.006.  Google Scholar

[19]

R. G. Iagar and A. Sánchez, Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction, J. Dynam. Differ. Equ., (2021), 34 pp. doi: 10.1007/s10884-020-09920-w.  Google Scholar

[20]

R. G. Iagar and A. Sánchez, Separate variable blow-up patterns for a reaction-diffusion equation with critical weighted reaction, arXiv: 2103.04500.  Google Scholar

[21]

R. G. Iagar and A. Sánchez, Eternal solutions for a reaction-diffusion equation with weighted reaction, Discret. Cont. Dynam. Syst., (2021), 27 pp. doi: 10.3934/dcds.2021160.  Google Scholar

[22]

X. KangW. Wang and X. Zhou, Classification of solutions of porous medium equation with localized reaction in higher space dimensions, Differ. Integral Equ., 24 (2011), 909-922.   Google Scholar

[23]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations, Proc. Royal Society Edinburgh Sect. A, 98 (1984), 183-202.  doi: 10.1017/S0308210500025609.  Google Scholar

[24]

Z. Liang, On the critical exponents for porous medium equation with a localized reaction in high dimensions, Commun. Pure Appl. Anal., 11 (2012), 649-658.  doi: 10.3934/cpaa.2012.11.649.  Google Scholar

[25]

A. de Pablo and A. Sánchez, Self-similar solutions satisfying or not the equation of the interface, J. Math. Anal. Appl., 276 (2002), 791-814.  doi: 10.1016/S0022-247X(02)00450-X.  Google Scholar

[26]

A. de Pablo and J. L. Vázquez, The balance between strong reaction and slow diffusion, Commun. Partial Differ. Equ., 15 (1990), 159-183.  doi: 10.1080/03605309908820682.  Google Scholar

[27]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differ. Equ., 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[28]

A. de Pablo and J. L. Vázquez, An overdetermined initial and boundary-value problem for a reaction-diffusion equation, Nonlinear Anal., 19 (1992), 259-269.  doi: 10.1016/0362-546X(92)90144-4.  Google Scholar

[29]

L. Perko, Differential equations and dynamical systems. Third edition, in Texts in Applied Mathematics, Springer Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[30]

R. G. Pinsky, Existence and nonexistence of global solutions for $u_t = \Delta u+a(x)u^p$ in $ \mathbb{R}^d$, J. Differ. Equ., 133 (1997), 152-177.  doi: 10.1006/jdeq.1996.3196.  Google Scholar

[31]

R. G. Pinsky, The behavior of the life span for solutions to $u_t = \Delta u+a(x)u^p$ in $ \mathbb{R}^d$, J. Differ. Equ., 147 (1998), 30-57.  doi: 10.1006/jdeq.1998.3438.  Google Scholar

[32]

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in quasilinear parabolic problems, de Gruyter Expositions in Mathematics, 19, W. de Gruyter, Berlin, 1995. doi: 10.1515/9783110889864.535.  Google Scholar

[33]

J. Sotomayor, Generic bifurcations of dynamical systems, in Proceedings of a Symposium Held at University of Bahia, Salvador, Brasil, Academic Press, New York, 1973, 561-582.  Google Scholar

[34]

R. Suzuki, Existence and nonexistence of global solutions of quasilinear parabolic equations, J. Math. Soc. Japan, 54 (2002), 747-792.  doi: 10.2969/jmsj/1191591992.  Google Scholar

[35]

J. L. Vázquez, The porous medium equation. Mathematical theory, in Oxford Monographs in Mathematics, Oxford University Press, 2007.  Google Scholar

show all references

References:
[1]

D. Andreucci and E. DiBenedetto, On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Scuola Norm. Sup. Pisa, 18 (1991), 363-441.   Google Scholar

[2]

D. Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differ. Equ., 10 (2005), 89-120.   Google Scholar

[3]

C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 316 (1989), 595-622.  doi: 10.2307/2001363.  Google Scholar

[4]

P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differ. Equ., 68 (1987), 238-252.  doi: 10.1016/0022-0396(87)90194-X.  Google Scholar

[5]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer Verlag, New York-Berlin, 1982.  Google Scholar

[6]

T. Date, Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems, J. Differ. Equ., 32 (1979), 311-334.  doi: 10.1016/0022-0396(79)90037-8.  Google Scholar

[7]

R. Ferreira and A. de Pablo, Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions, Rev. Mat. Complut., 31 (2018), 805-832.  doi: 10.1007/s13163-018-0267-4.  Google Scholar

[8]

R. FerreiraA. de Pablo and J. L. Vázquez, Classification of blow-up with nonlinear diffusion and localized reaction, J. Differ. Equ., 231 (2006), 195-211.  doi: 10.1016/j.jde.2006.04.017.  Google Scholar

[9]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl., 316 (2006), 538-555.  doi: 10.1016/j.jmaa.2005.05.007.  Google Scholar

[10]

J. Guckenheimer and Ph. Holmes, Nonlinear oscillation, dynamical systems and bifurcations of vector fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1990.  Google Scholar

[11]

J. S. GuoC. S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient, Dynam. Systems Appl., 19 (2010), 415-433.   Google Scholar

[12]

J. S. GuoC. S. Lin and M. Shimojo, Blow-up for a reaction-diffusion equation with variable coefficient, Appl. Math. Lett., 26 (2013), 150-153.  doi: 10.1016/j.aml.2012.07.017.  Google Scholar

[13]

J. S. Guo and M. Shimojo, Blowing up at zero points of potential for an initial boundary value problem, Commun. Pure Appl. Anal., 10 (2011), 161-177.  doi: 10.3934/cpaa.2011.10.161.  Google Scholar

[14]

J. S. Guo and P. Souplet, Excluding blowup at zero points of the potential by means of Liouville-type theorems, J. Differ. Equ., 265 (2018), 4942-4964.  doi: 10.1016/j.jde.2018.06.025.  Google Scholar

[15]

R. G. Iagar and A. Sánchez, Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction with linear growth, J. Dynam. Differ. Equ., 31 (2019), 2061-2094.  doi: 10.1007/s10884-018-09727-w.  Google Scholar

[16]

R. G. Iagar and A. Sánchez, Blow up profiles for a reaction-diffusion equation with critical weighted reaction, Nonlinear Anal., 191 (2020), 111628, 24 pp. doi: 10.1016/j.na.2019.111628.  Google Scholar

[17]

R. G. Iagar and A. Sánchez, Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction, Adv. Nonlinear Stud., 20 (2020), 867-894.  doi: 10.1515/ans-2020-2104.  Google Scholar

[18]

R. G. Iagar and A. Sánchez, Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction, J. Differ. Equ., 272 (2021), 560-605.  doi: 10.1016/j.jde.2020.10.006.  Google Scholar

[19]

R. G. Iagar and A. Sánchez, Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction, J. Dynam. Differ. Equ., (2021), 34 pp. doi: 10.1007/s10884-020-09920-w.  Google Scholar

[20]

R. G. Iagar and A. Sánchez, Separate variable blow-up patterns for a reaction-diffusion equation with critical weighted reaction, arXiv: 2103.04500.  Google Scholar

[21]

R. G. Iagar and A. Sánchez, Eternal solutions for a reaction-diffusion equation with weighted reaction, Discret. Cont. Dynam. Syst., (2021), 27 pp. doi: 10.3934/dcds.2021160.  Google Scholar

[22]

X. KangW. Wang and X. Zhou, Classification of solutions of porous medium equation with localized reaction in higher space dimensions, Differ. Integral Equ., 24 (2011), 909-922.   Google Scholar

[23]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations, Proc. Royal Society Edinburgh Sect. A, 98 (1984), 183-202.  doi: 10.1017/S0308210500025609.  Google Scholar

[24]

Z. Liang, On the critical exponents for porous medium equation with a localized reaction in high dimensions, Commun. Pure Appl. Anal., 11 (2012), 649-658.  doi: 10.3934/cpaa.2012.11.649.  Google Scholar

[25]

A. de Pablo and A. Sánchez, Self-similar solutions satisfying or not the equation of the interface, J. Math. Anal. Appl., 276 (2002), 791-814.  doi: 10.1016/S0022-247X(02)00450-X.  Google Scholar

[26]

A. de Pablo and J. L. Vázquez, The balance between strong reaction and slow diffusion, Commun. Partial Differ. Equ., 15 (1990), 159-183.  doi: 10.1080/03605309908820682.  Google Scholar

[27]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differ. Equ., 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[28]

A. de Pablo and J. L. Vázquez, An overdetermined initial and boundary-value problem for a reaction-diffusion equation, Nonlinear Anal., 19 (1992), 259-269.  doi: 10.1016/0362-546X(92)90144-4.  Google Scholar

[29]

L. Perko, Differential equations and dynamical systems. Third edition, in Texts in Applied Mathematics, Springer Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[30]

R. G. Pinsky, Existence and nonexistence of global solutions for $u_t = \Delta u+a(x)u^p$ in $ \mathbb{R}^d$, J. Differ. Equ., 133 (1997), 152-177.  doi: 10.1006/jdeq.1996.3196.  Google Scholar

[31]

R. G. Pinsky, The behavior of the life span for solutions to $u_t = \Delta u+a(x)u^p$ in $ \mathbb{R}^d$, J. Differ. Equ., 147 (1998), 30-57.  doi: 10.1006/jdeq.1998.3438.  Google Scholar

[32]

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in quasilinear parabolic problems, de Gruyter Expositions in Mathematics, 19, W. de Gruyter, Berlin, 1995. doi: 10.1515/9783110889864.535.  Google Scholar

[33]

J. Sotomayor, Generic bifurcations of dynamical systems, in Proceedings of a Symposium Held at University of Bahia, Salvador, Brasil, Academic Press, New York, 1973, 561-582.  Google Scholar

[34]

R. Suzuki, Existence and nonexistence of global solutions of quasilinear parabolic equations, J. Math. Soc. Japan, 54 (2002), 747-792.  doi: 10.2969/jmsj/1191591992.  Google Scholar

[35]

J. L. Vázquez, The porous medium equation. Mathematical theory, in Oxford Monographs in Mathematics, Oxford University Press, 2007.  Google Scholar

Figure 1.  Orbits from $ P_0 $ and $ P_2 $ in the phase space for $ \sigma $ small. Experiment for $ m = 3 $, $ p = 0.5 $, $ N = 4 $ and $ \sigma = 3.5 $
Figure 2.  A plot of the regions $ D_1 $, $ D_2 $ and $ D_3 $ in the phase space
Figure 3.  The planes $ (\Pi_1) $ and $ (\Pi_2) $ in the phase space
Figure 4.  Orbits from $ P_2 $ and $ P_0 $ for different values of $ \sigma $. Experiments for $ m = 3 $, $ p = 0.5 $, $ N = 4 $ and $ \sigma = 4.822 $, respectively $ \sigma = 6 $
[1]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[2]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[3]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[4]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[5]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[6]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[7]

Razvan Gabriel Iagar, Ariel Sánchez. Eternal solutions for a reaction-diffusion equation with weighted reaction. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021160

[8]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[9]

Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010

[10]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[11]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[12]

Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135

[13]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[14]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[15]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[16]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[17]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[18]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[19]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[20]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (58)
  • HTML views (47)
  • Cited by (0)

[Back to Top]