Advanced Search
Article Contents
Article Contents

Inertial manifolds for parabolic differential equations: The fully nonautonomous case

  • *Corresponding author

    *Corresponding author 

The work of V.T.N. Ha is partly supported by by the Project of Vietnam Ministry of Education and Training under Project B2022-BKA-06. This work is financially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.02-2021.04

Abstract Full Text(HTML) Related Papers Cited by
  • We study the existence of an inertial manifold for the solutions to fully non-autonomous parabolic differential equation of the form

    $ \dfrac{du}{dt} + A(t)u(t) = f(t,u),\, t> s. $

    We prove the existence of such an inertial manifold in the case that the family of linear partial differential operators $ (A(t))_{t\in { \mathbb {R}}} $ generates an evolution family $ (U(t,s))_{t\ge s} $ satisfying certain dichotomy estimates, and the nonlinear forcing term $ f(t,x) $ satisfies the Lipschitz condition such that certain dichotomy gap condition holds.

    Mathematics Subject Classification: Primary: 35B42; 35B35.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. 
    [2] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differ. Integral Equ., 1 (1988), 433-457. 
    [3] I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynam. Differ. Equ., 13 (2001), 355-380.  doi: 10.1023/A:1016684108862.
    [4] P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, 1989. doi: 10.1007/BF01048790.
    [5] A. Debussche and R. Temam, Inertial manifolds and the slow manifolds in meteorology, Differ. Integral Equ., 4 (1991), 897-931. 
    [6] A. Debussche and R. Temam, Some new generalizations of inertial manifolds, Discrete and Continuous Dynamical Systems, 2 (1996), 543-558.  doi: 10.3934/dcds.1996.2.543.
    [7] C. Foias, G. R. Sell, and R. Temam, Variétés inertielles des équations différentielles dissipatives, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 301 (1985), 139–142.
    [8] K. Furuya and A. Yagi, Linearized stability for abstract quasilinear equations of parabolic type, Funkcial. Ekvac., 37 (1994), 483-504. 
    [9] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, 2000.
    [10] N. T. Huy, Inertial Manifolds for Semi-linear Parabolic Equations in Admissible Spaces, J. Math. Anal. Appl., 386 (2012), 894-909.  doi: 10.1016/j.jmaa.2011.08.051.
    [11] N. T. Huy, Admissibly inertial manifolds for a class of semi-linear evolution equations, J. Differ. Equ., 254 (2013), 2638-2660.  doi: 10.4064/ap112-2-3.
    [12] N. T. Huy and X. Q. Bui, Competition models with diffusion, analytic semigroups, and inertial manifolds, Math. Method. Appl. Sci., 41 (2018), 8182-8200.  doi: 10.1002/mma.5281.
    [13] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
    [14] M. Kwak, Finite-dimensional inertial forms for the 2D Navier-Stokes equations, Indiana Uni. Math. J., 41 (1992), 927-981.  doi: 10.1512/iumj.1992.41.41051.
    [15] A. J. Linot and M. D. Graham, Deep learning to discover and predict dynamics on an inertial manifold, Phys. Rev. E, 101 (2020), 8 pp. doi: 10.1103/physreve.101.062209.
    [16] N. V. MinhF. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line, Integral Equ. Operat. Theor., 32 (1998), 332-353.  doi: 10.1007/BF01203774.
    [17] J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications, Springer-Verlag Berlin (2003).
    [18] R. Nagel and G. Nickel, Well-posedness for non-autonomous abstract Cauchy problems, Progr. Nonlinear Differ. Equ. Appl., 50 (2002), 279-293. 
    [19] A. Pazy, Semigroup of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, Berlin, 1983 doi: 10.1007/978-1-4612-5561-1.
    [20] R. Rosa, Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee–Infante equation, J. Dynam. Differ. Equ., 15 (2003), 61-86.  doi: 10.1023/A:1026153311546.
    [21] G. R. Sell, Inertial manifolds: The non-self-adjoint case, J. Differ. Equ., 96 (1992), 203-255.  doi: 10.1016/0022-0396(92)90152-D.
    [22] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, 2002. doi: 10.1007/978-1-4757-5037-9.
    [23] S. Takagi, Smoothness of inertial manifolds for semilinear evolution equations in complex Banach spaces, Differ. Integral Equ., 21 (2008), 63-80. 
    [24] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York 1988. doi: 10.1007/978-1-4684-0313-8.
    [25] S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinb. Sec. A, 144 (2014), 1245-1327.  doi: 10.1017/S0308210513000073.
  • 加载中

Article Metrics

HTML views(550) PDF downloads(197) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint