Let $ n\ge2 $ and $ \Omega\subset\mathbb{R}^n $ be a bounded NTA domain. In this article, the authors study (weighted) global regularity estimates for Neumann boundary value problems of second-order elliptic equations of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in $ \Omega $. Precisely, for any given $ p\in(2,\infty) $, via a weak reverse Hölder inequality with the exponent $ p $, the authors give a sufficient condition for the global $ W^{1,p} $ estimate and the global weighted $ W^{1,q} $ estimate, with $ q\in[2,p] $ and some Muckenhoupt weights, of solutions to Neumann boundary value problems in $ \Omega $. As applications, the authors further obtain global regularity estimates for solutions to Neumann boundary value problems of second-order elliptic equations of divergence form with coefficients consisting of both a small $ \mathrm{BMO} $ symmetric part and a small $ \mathrm{BMO} $ anti-symmetric part, respectively, in bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, $ C^1 $ domains, or (semi-)convex domains, in weighted Lebesgue spaces. The results given in this article improve the known results by weakening the assumption on the coefficient matrix.
Citation: |
[1] |
P. Auscher, On Necessary and Sufficient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ${{\mathbb{R}}^{n}}$ and Related Estimates, Memoirs of the American Mathematical Society, 186 (2007), no. 871, 75 pp.
doi: 10.1090/memo/0871.![]() ![]() ![]() |
[2] |
P. Auscher and J. M. Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. General operator theory and weights, Adv. Math., 212 (2007), 225-276.
doi: 10.1016/j.aim.2006.10.002.![]() ![]() ![]() |
[3] |
P. Auscher and M. Qafsaoui, Observations on W1, p estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 5 (2002), 487-509.
![]() ![]() |
[4] |
A. Banerjee and J. L. Lewis, Gradient bounds for p-harmonic systems with vanishing Neumann (Dirichlet) data in a convex domain, Nonlinear Anal., 100 (2014), 78-85.
doi: 10.1016/j.na.2014.01.009.![]() ![]() ![]() |
[5] |
A. Barton and S. Mayboroda, Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces, Memoirs of the American Mathematical Society, 243 (2016), no. 1149,110 pp.
doi: 10.1090/memo/1149.![]() ![]() ![]() |
[6] |
S. Buckley and P. Koskela, Sobolev - Poincaré implies John, Math. Res. Lett., 2 (1995), 577-593.
doi: 10.4310/MRL.1995.v2.n5.a5.![]() ![]() ![]() |
[7] |
T. A. Bui and X. T. Duong, Weighted variable exponent Sobolev estimates for elliptic equations with non-standard growth and measure data, NoDEA Nonlinear Differential Equations Appl., 25 (2018), no. 4, Paper No. 28, 37 pp.
doi: 10.1007/s00030-018-0520-z.![]() ![]() ![]() |
[8] |
T. A. Bui and X. T. Duong, Weighted Lorentz estimates for parabolic equations with non-standard growth on rough domains, Calc. Var. Partial Differ. Equ., 56 (2017), no. 6, Art. 177, 27 pp.
doi: 10.1007/s00526-017-1273-y.![]() ![]() ![]() |
[9] |
T. A. Bui and X. T. Duong, Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains, Calc. Var. Partial Differ. Equ., 56 (2017), no. 2, Art. 47, 24 pp.
doi: 10.1007/s00526-017-1130-z.![]() ![]() ![]() |
[10] |
S. S. Byun and L. Wang, The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. London Math. Soc., 90 (2005), 245-272.
doi: 10.1112/S0024611504014960.![]() ![]() ![]() |
[11] |
S. S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., 57 (2004), 1283-1310.
doi: 10.1002/cpa.20037.![]() ![]() ![]() |
[12] |
L. Caffarelli and I. Peral, On W1, p estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51 (1998), 1-21.
doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N.![]() ![]() ![]() |
[13] |
D. C. Chang, The dual of Hardy spaces on a bounded domain in ${{\mathbb{R}}^{n}}$, Forum Math., 6 (1994), 65-81.
doi: 10.1515/form.1994.6.65.![]() ![]() ![]() |
[14] |
D. C. Chang, G. Dafni and C. Sadosky, A div-curl lemma in BMO on a domain, in Harmonic Analysis, Signal processing, and Complexity, Birkhäuser Boston, Boston, MA, 2005.
doi: 10.1007/0-8176-4416-4_5.![]() ![]() ![]() |
[15] |
D. C. Chang, G. Dafni and H. Yue, A div-curl decomposition for the local Hardy space, Proc. Amer. Math. Soc., 137 (2009), 3369-3377.
doi: 10.1090/S0002-9939-09-09970-5.![]() ![]() ![]() |
[16] |
S. Chua, Weighted inequalities on John domains, J. Math. Anal. Appl., 258 (2001), 763-776.
doi: 10.1006/jmaa.2000.7246.![]() ![]() ![]() |
[17] |
R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.
![]() ![]() |
[18] |
H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients, Arch. Ration. Mech. Anal., 196 (2010), 25-70.
doi: 10.1007/s00205-009-0228-7.![]() ![]() ![]() |
[19] |
H. Dong and D. Kim, The conormal derivative problem for higher order elliptic systems with irregular coefficients, in: Recent Advances in Harmonic Analysis and Partial Differential Equations, 69-97, Contemp. Math. 581, Amer. Math. Soc., Providence, RI, 2012.
doi: 10.1090/conm/581/11534.![]() ![]() ![]() |
[20] |
H. Dong and D. Kim, On Lp-estimates for elliptic and parabolic equations with Ap weights, Trans. Amer. Math. Soc., 370 (2018), 5081-5130.
doi: 10.1090/tran/7161.![]() ![]() ![]() |
[21] |
H. Dong and Z. Li, The conormal and Robin boundary value problems in nonsmooth domains satisfying a measure condition, J. Funct. Anal., 281 (2021), no. 9, Paper No. 109167, 32 pp.
doi: 10.1016/j.jfa.2021.109167.![]() ![]() ![]() |
[22] |
H. Dong and T. Phan, Mixed-norm Lp-estimates for non-stationary Stokes systems with singular VMO coefficients and applications, J. Differ. Equ., 276 (2021), 342-367.
doi: 10.1016/j.jde.2020.12.023.![]() ![]() ![]() |
[23] |
E. Fabes, O. Mendez and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.
doi: 10.1006/jfan.1998.3316.![]() ![]() ![]() |
[24] |
C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137-193.
doi: 10.1007/BF02392215.![]() ![]() ![]() |
[25] |
J. Geng, W1, p estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains, Adv. Math., 229 (2012), 2427-2448.
doi: 10.1016/j.aim.2012.01.004.![]() ![]() ![]() |
[26] |
J. Geng, Homogenization of elliptic problems with Neumann boundary conditions in non-smooth domains, Acta Math. Sin. (Engl. Ser.), 34 (2018), 612-628.
doi: 10.1007/s10114-017-7229-5.![]() ![]() ![]() |
[27] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton, NJ, 1983.
![]() ![]() |
[28] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.
![]() ![]() |
[29] |
L. Grafakos, Classical Fourier Analysis, 3rd edition, Graduate Texts in Mathematics 249, Springer, New York, 2014.
doi: 10.1007/978-1-4939-1194-3.![]() ![]() ![]() |
[30] |
D. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math., 46 (1982), 80-147.
doi: 10.1016/0001-8708(82)90055-X.![]() ![]() ![]() |
[31] |
D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.
doi: 10.1006/jfan.1995.1067.![]() ![]() ![]() |
[32] |
H. Jia, D. Li and L. Wang, Global regularity for divergence form elliptic equations on quasiconvex domains, J. Differ. Equ., 249 (2010), 3132-3147.
doi: 10.1016/j.jde.2010.08.015.![]() ![]() ![]() |
[33] |
P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41-66.
doi: 10.1512/iumj.1980.29.29005.![]() ![]() ![]() |
[34] |
P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88.
doi: 10.1007/BF02392869.![]() ![]() ![]() |
[35] |
C. E. Kenig and T. Toro, Harmonic measure on locally flat domains, Duke Math. J., 87 (1997), 509-551.
doi: 10.1215/S0012-7094-97-08717-2.![]() ![]() ![]() |
[36] |
L. Li and J. Pipher, Boundary behavior of solutions of elliptic operators in divergence form with a BMO anti-symmetric part, Commun. Partial Differ. Equ., 44 (2019), 156-204.
doi: 10.1080/03605302.2018.1542437.![]() ![]() ![]() |
[37] |
V. G. Maz'ya and I. E. Verbitsky, Form boundedness of the general second-order differential operator, Commun. Pure Appl. Math., 59 (2006), 1286-1329.
doi: 10.1002/cpa.20122.![]() ![]() ![]() |
[38] |
N. G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189-206.
![]() ![]() |
[39] |
D. Mitrea, I. Mitrea, M. Mitrea and L. Yan, Coercive energy estimates for differential forms in semi-convex domains, Commun. Pure Appl. Anal., 9 (2010), 987-1010.
doi: 10.3934/cpaa.2010.9.987.![]() ![]() ![]() |
[40] |
D. Mitrea, M. Mitrea and L. Yan, Boundary value problems for the Laplacian in convex and semiconvex domains, J. Funct. Anal., 258 (2010), 2507-2585.
doi: 10.1016/j.jfa.2010.01.012.![]() ![]() ![]() |
[41] |
J. Nečas, Direct Methods in the Theory of Elliptic Equations, Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader, Springer Monographs in Mathematics, Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-10455-8.![]() ![]() ![]() |
[42] |
E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math., 104 (1960), 1-92.
doi: 10.1007/BF02547186.![]() ![]() ![]() |
[43] |
D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391-405.
doi: 10.2307/1997184.![]() ![]() ![]() |
[44] |
G. Seregin, L. Silvestre, V. Šverák and A. Zlatoš, On divergence-free drifts, J. Differ. Equ., 252 (2012), 505-540.
doi: 10.1016/j.jde.2011.08.039.![]() ![]() ![]() |
[45] |
Z. Shen, Weighted L2 estimates for elliptic homogenization in Lipschitz domains, arXiv: 2004.03087.
![]() |
[46] |
Z. Shen, Periodic Homogenization of Elliptic Systems, Operator Theory: Advances and Applications 269, Advances in Partial Differential Equations (Basel), Birkhäuser/Springer, Cham, 2018.
doi: 10.1007/978-3-319-91214-1.![]() ![]() ![]() |
[47] |
Z. Shen, The Lp boundary value problems on Lipschitz domains, Adv. Math., 216 (2007), 212-254.
doi: 10.1016/j.aim.2007.05.017.![]() ![]() ![]() |
[48] |
Z. Shen, Bounds of Riesz transforms on Lp spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble), 55 (2005), 173-197.
![]() ![]() |
[49] |
E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
![]() ![]() |
[50] |
T. Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc., 44 (1997), 1087-1094.
![]() ![]() |
[51] |
L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.), 19 (2003), 381-396.
doi: 10.1007/s10114-003-0264-4.![]() ![]() ![]() |
[52] |
S. Yang, D. C. Chang, D. Yang and W. Yuan, Weighted gradient estimates for elliptic problems with Neumann boundary conditions in Lipschitz and (semi-)convex domains, J. Differ. Equ., 268 (2020), 2510-2550.
doi: 10.1016/j.jde.2019.09.036.![]() ![]() ![]() |
[53] |
S. Yang, D. Yang and W. Yuan, Weighted global regularity estimates for elliptic problems with Robin boundary conditions in Lipschitz domains, J. Differ. Equ., 296 (2021), 512-572.
doi: 10.1016/j.jde.2021.06.010.![]() ![]() ![]() |
[54] |
S. Yang, D. Yang and W. Yuan, Global gradient estimates for Dirichlet problems of elliptic operators with a BMO anti-symmetric part, Submitted.
![]() |