In the present paper we study the asymptotic behavior of discretized finite dimensional dynamical systems. We prove that under some discrete angle condition and under a Lojasiewicz's inequality condition, the solutions to an implicit scheme converge to equilibrium points. We also present some numerical simulations suggesting that our results may be extended under weaker assumptions or to infinite dimensional dynamical systems.
Citation: |
Figure 1.
Simulation for (5.1). Here
Figure 3.
Simulation for (5.1). Here
Figure 5.
Simulation for (5.2). Here
Figure 7.
Simulation for (5.2). Here
[1] | P. A. Absil., R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547. doi: 10.1137/040605266. |
[2] | N. Alaa and M. Pierre, Convergence to equilibrium for discretized gradient-like systems with analytic features, IMA J. Numer. Anal., 33 (2013), 1291-1321. doi: 10.1093/imanum/drs042. |
[3] | F. Aloui, I. Ben Hassen and A. Haraux, Compactness of trajectories to some nonlinear second order evolution equations and applications, J. Math. Pures Appl., 100 (2013), 295-326. doi: 10.1016/j.matpur.2013.01.002. |
[4] | H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program. Ser. B, 116 (2009), 5-16. doi: 10.1007/s10107-007-0133-5. |
[5] | L. Chergui, Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity, J. Dynam. Differ. Equ., 20 (2008), 643-652. doi: 10.1007/s10884-007-9099-5. |
[6] | R. Chill, A. Haraux and M. A. Jendoubi, Applications of the Lojasiewicz-Simon, gradient inequality to gradient-like evolution equations, Anal. Appl. Singap., 7 (2009), 351-372. doi: 10.1142/S0219530509001438. |
[7] | M. Crouzeix and A. Mignot, Analyse numérique des équations différentielles, in Collection Mathématiques Appliquées pour la Maîitrise, Paris, Masson, 1984. |
[8] | D. D'Acunto and K. Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Pol. Math., 87 (2005), 51-61. doi: 10.4064/ap87-0-5. |
[9] | M. Grasselli and M. Pierre, Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems, Commun. Pure Appl. Anal., 11 (2012), 2393-2416. doi: 10.3934/cpaa.2012.11.2393. |
[10] | A. Haraux and M. A. Jendoubi, The convergence problem for dissipative autonomous systems - classical methods and recent advances, in Springer Briefs in Mathematics, Springer, Bcam, 2015. doi: 10.1007/978-3-319-23407-6. |
[11] | A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differ. Equ., 144 (1998), 313-320. doi: 10.1006/jdeq.1997.3393. |
[12] | A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asympt. Anal., 26 (2001), 21-36. |
[13] | A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evol. Equ. Contr. Theor., 2 (2013), 461-470. doi: 10.3934/eect.2013.2.461. |
[14] | T. Horsin and M. A. Jendoubi, Non-genericity of initial data with punctual $\omega$-limit set, Arch. Math., 114 (2020), 185-193. doi: 10.1007/s00013-019-01377-8. |
[15] | M. A. Jendoubi and P. Polacik, Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. R. Soc. Edinb., Sect. A, Math., 133 (2003), 1137-1153. doi: 10.1017/S0308210500002845. |
[16] | S. Lojasiewicz, Une propriété topologique des sous ensembles analytiques réels, Les équations aux dérivées partielles, (1963), 87–89. |
[17] | S. Lojasiewicz, Ensembles semi-analytiques, I. H. E. S., notes, 1965. |
[18] | B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9 (2010), 685-702. doi: 10.3934/cpaa.2010.9.685. |
[19] | J. Palis and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, New-York, 1982. |
Simulation for (5.1). Here
Simulation for (5.1). Here
Simulation for (5.1). Here
Simulation for (5.2). Here
Simulation for (5.2). Here
Simulation for (5.2). Here