By means of the method of moving planes, we study the monotonicity of positive solutions to degenerate quasilinear elliptic systems in half-spaces. We also prove the symmetry of positive solutions to the systems in strips by using similar arguments. Our work extends the main results obtained in [16,20] to the system, in which substantial differences with the single cases are presented.
Citation: |
[1] |
A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315.
doi: 10.1007/BF02413056.![]() ![]() ![]() |
[2] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., 50 (1997), 1089-1111.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.![]() ![]() ![]() |
[3] |
H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.
doi: 10.1007/BF01244896.![]() ![]() ![]() |
[4] |
H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 69-94.
![]() ![]() |
[5] |
M. F. Bidaut-Véron, R. Borghol and L. Véron, Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations, Calc. Var. Partial Differ Equ, 27 (2006), 159-177.
doi: 10.1007/s00526-006-0003-7.![]() ![]() ![]() |
[6] |
Z. Chen, C. S. Lin and W. Zou, Monotonicity and nonexistence results to cooperative systems in the half space, J. Funct. Anal., 266 (2014), 1088-1105.
doi: 10.1016/j.jfa.2013.08.021.![]() ![]() ![]() |
[7] |
L. Damascelli and F. Pacella, Monotonicity and symmetry of solutions of $p$-Laplace equations, $1 < p < 2$, via the moving plane method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 689-707.
![]() ![]() |
[8] |
L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations, J. Differ. Equ., 206 (2004), 483-515.
doi: 10.1016/j.jde.2004.05.012.![]() ![]() ![]() |
[9] |
L. Damascelli and B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of $m$-Laplace equations, Calc. Var. Partial Differ. Equ., 25 (2006), 139-159.
doi: 10.1007/s00526-005-0337-6.![]() ![]() ![]() |
[10] |
E. N. Dancer, Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.
doi: 10.1007/s00208-008-0226-3.![]() ![]() ![]() |
[11] |
D. G. de Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differ. Equ. Appl., 1 (1994), 119-123.
doi: 10.1007/BF01193947.![]() ![]() ![]() |
[12] |
E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.
doi: 10.1016/0362-546X(83)90061-5.![]() ![]() ![]() |
[13] |
A. Farina, L. Montoro, G. Riey and B. Sciunzi, Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1-22.
doi: 10.1016/j.anihpc.2013.09.005.![]() ![]() ![]() |
[14] |
A. Farina, L. Montoro and B. Sciunzi, Monotonicity and one-dimensional symmetry for solutions of $-\Delta_pu = f(u)$ in half-spaces, Calc. Var. Partial Differ. Equ., 43 (2012), 123-145.
doi: 10.1007/s00526-011-0405-z.![]() ![]() ![]() |
[15] |
A. Farina, L. Montoro and B. Sciunzi, Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces, Math. Ann., 357 (2013), 855-893.
doi: 10.1007/s00208-013-0919-0.![]() ![]() ![]() |
[16] |
A. Farina, L. Montoro and B. Sciunzi, Monotonicity in half-space of positive solutions to $-\Delta_pu = f(u)$ in the case $p>2$, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (2017), 1207-1229.
![]() ![]() |
[17] |
A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal., 195 (2010), 1025-1058.
doi: 10.1007/s00205-009-0227-8.![]() ![]() ![]() |
[18] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
[19] |
T. Kilpeläinen, H. Shahgholian and X. Zhong, Growth estimates through scaling for quasilinear partial differential equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 595-599.
![]() ![]() |
[20] |
L. Montoro, G. Riey and B. Sciunzi, Qualitative properties of positive solutions to systems of quasilinear elliptic equations, Adv. Differ. Equ., 20 (2015), 717-740.
![]() ![]() |
[21] |
P. Pucci and J. Serrin, The maximum principle, vol. 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.
![]() ![]() |
[22] |
B. Sciunzi, Classification of positive $\mathcal{D}^{1, p}(\mathbb{R}^N)$-solutions to the critical $p$-Laplace equation in $\mathbb{R}^N$, Adv. Math., 291 (2016), 12-23.
doi: 10.1016/j.aim.2015.12.028.![]() ![]() ![]() |
[23] |
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468.![]() ![]() ![]() |
[24] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51 (1984), 126-150.
doi: 10.1016/0022-0396(84)90105-0.![]() ![]() ![]() |
[25] |
W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differ. Equ., 42 (1981), 400-413.
doi: 10.1016/0022-0396(81)90113-3.![]() ![]() ![]() |
[26] |
J. Vétois, A priori estimates and application to the symmetry of solutions for critical $p$-Laplace equations, J. Differ. Equ., 260 (2016), 149-161.
doi: 10.1016/j.jde.2015.08.041.![]() ![]() ![]() |