This paper is devoted to the construction of analogues of higher Ekeland-Hofer symplectic capacities for $ P $-symmetric subsets in the standard symplectic space $ (\mathbb{R}^{2n},\omega_0) $, which is motivated by Long and Dong's study about $ P $-symmetric closed characteristics on $ P $-symmetric convex bodies. We study the relationship between these capacities and other capacities, and give some computation examples. Moreover, we also define higher real symmetric Ekeland-Hofer capacities as a complement of Jin and the second named author's recent study of the real symmetric analogue about the first Ekeland-Hofer capacity.
Citation: |
[1] |
A. Akopyan and R. Karasev, Estimating symplectic capacities from lengths of closed curves on the unit spheres, preprint, arXiv: 1801.00242.
![]() |
[2] |
S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Math. Res. Not., 2014 (2014), 165-193.
doi: 10.1093/imrn/rns216.![]() ![]() ![]() |
[3] |
L. Baracco, M. Fassina and S. Pinton, On the Ekeland-Hofer symplectic capacities of the real bidisc, Pacific J. Math., 305 (2020), 423-446.
doi: 10.2140/pjm.2020.305.423.![]() ![]() ![]() |
[4] |
V. Benci, On the critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), 533-572.
doi: 10.2307/1999120.![]() ![]() ![]() |
[5] |
Y. Dong and Y. Long, Closed characteristics on partially symmetric compact convex hypersurfaces in $\mathbb{R}^{2n}$, J. Differ. Equ., 196 (2004), 226-248.
doi: 10.1016/S0022-0396(03)00168-2.![]() ![]() ![]() |
[6] |
I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.
doi: 10.1007/BF01215653.![]() ![]() ![]() |
[7] |
I. Ekeland and H. Hofer, Symplectic topology and Haniltonian dynamics II, Math. Z., 203 (1990), 553-567.
doi: 10.1007/BF02570756.![]() ![]() ![]() |
[8] |
E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139-174.
doi: 10.1007/BF01390270.![]() ![]() ![]() |
[9] |
H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., 90 (1987), 1-9.
doi: 10.1007/BF01389030.![]() ![]() ![]() |
[10] |
H, Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, 1$^{st}$ edition, Birkhüser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8540-9.![]() ![]() ![]() |
[11] |
Rongrong Jin and Guangcun Lu, Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications, preprint, arXiv: 1903.01116v2.
![]() |
[12] |
R. R. Jin and G. C. Lu, Representation formula for symmetrical symplectic capacity and applications, Discrete Contin. Dyn. Syst., 40 (2020), 4705-4765.
doi: 10.3934/dcds.2020199.![]() ![]() ![]() |
[13] |
R. R. Jin and G. C. Lu, Coisotropic Ekeland-Hofer capacities, preprint, arXiv: 1910.14474.
![]() |
[14] |
V. G. B. Ramos, Symplectic embeddings and the Lagrangian bidisk, Duke Math. J., 166 (2017), 1703-1738.
doi: 10.1215/00127094-0000011X.![]() ![]() ![]() |
[15] |
J. C. Sikorav, Systémes Hamiltoniens et Topologie Symplectique, Ph.D thesis, Dipartimento di Matematica dell'Universitá di Pisa, 1990.
![]() |
[16] |
A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann., 283 (1989), 241-255.
doi: 10.1007/BF01446433.![]() ![]() ![]() |